

Abstract— Modern Field Programmable Gate Arrays

(FPGA) are fast moving into the consumer market and their

domain has expanded from prototype designing to low and

medium volume productions. FPGAs are proving to be an

attractive replacement for Application Specific Integrated

Circuits (ASIC) primarily because of the low Non-recurring

Engineering (NRE) costs associated with FPGA platforms. This

has prompted FPGA vendors to improve the capacity and

flexibility of the underlying primitive fabric and include

specialized macro support and intellectual property (IP) cores

in their offerings. However, most of the work related to FPGA

implementations does not take full advantage of these

offerings. This is primarily because designers rely mainly on

the technology-independent optimization to enhance the

performance of the system and completely neglect the speed-up

that is achievable using these embedded primitives and macro

support. In this paper, we consider the technology-dependent

optimization of fixed-point bit-parallel multipliers by carrying

out their implementations using embedded primitives and

macro support that are inherent in modern day FPGAs. Our

implementation targets three different FPGA families viz.

Spartan-6, Virtex-4 and Virtex-5. The implementation results

indicate that a considerable speed up in performance is

achievable using these embedded FPGA resources.

Keywords— Fixed point arithmetic, FPGA primitives,

VHDL, Instantiation based coding, Look-up table.

I. INTRODUCTION

The multiplier circuit is one of the fundamental

components used in digital signal processing (DSP) [1] [2]

[3] [4]. The field of DSP has always been driven by the

advancements in scaled very-large-scale-integration (VLSI)

technologies. The goal of digital design is to maximize the

performance while keeping the cost down [5]. In the context

of general digital design, performance is measured in terms

of the amount of hardware circuitry and resources required;

the speed of execution (throughput and clock rate); and the

amount of power dissipated. There is always an application-

driven tradeoff between these parameters. It is, therefore,

desirable to have an efficient realization of these circuits for

use in different DSP systems [6] [7].

DSP algorithms have traditionally been implemented

using general purpose processors or DSP processors.

Manuscript received March 31, 2015. Received in revised form May 5,

2015.
B. Khurshid is with the National Institute of Technology, Srinagar, J &

K, India (e-mail: burhan_07phd12@nitsri.net).

R. N. Mir is with the National Institute of Technology, Srinagar, J & K,
India (e-mail: naaz310@nitsri.net).

However, with current trend moving back towards hardware

intensive processing it becomes important for the designers

to give a serious thought to the underlying implementation

platform [8]. Applications demanding an increased

performance mainly use application integrated circuits

(ASIC) or structural ASICs [2]. The main attraction with

ASICs is that the architecture can be developed specifically

to meet the performance requirement. However, the non-

recurring engineering (NRE) costs associated with ASICs

have cornered their use only to high-volume markets. Field

programmable gate arrays (FPGAs) provide an alternate

approach to ASICs. They avoid the high NRE costs by

giving the user the flexibility to configure the device in field

[4], [9]. Some other advantages include large-scale

integration [4], [10], lower energy requirements [11], [12]

availability of several on-board intellectual property (IP)

cores [13] etc.

Design for FPGAs differs dramatically from general

VLSI design [14]. The design process proceeds through

phases like design entry, synthesis, translation, mapping and

place & route (PAR). Design entry is the only manual phase

in the entire design flow. Therefore, using FPGAs as an

implementation platform requires programming of the

desired functionality using some hardware descriptive

language (HDL), as it is the most widely used design entry

method [15]. The rest of the design process is automated and

there is a strong computer aided design (CAD) support for

synthesis and implementation. However, sophisticated CAD

tools are often not good enough to meet some design

constraint if an arbitrary coding style is used [16]. A popular

guideline that has been followed for writing functional

synthesizable HDL codes is the RTL guideline, where RTL

stands for register transfer level, signifying that data transfer

should occur through registers only. These guidelines adhere

to synchronous design practices and signify the regulation of

data flow, and how data is being processed [17] rather than

what part of the FPGA fabric processes the data. In effect,

such codes are purely inferential and strongly rely on the

software environment that distributes the logic as per the

design goal. Thus, in order to effectively use embedded

primitive and macro resources the design entry needs to be

modified.

There has been subsequent work regarding

implementation of multipliers on FPGAs [17-33]. These

mainly focus on modifying the multiplier architecture to

achieve performance improvement. However, there has been

very limited effort in improving the performance by using

embedded FPGA resources [34-36]. In this paper we carry

Achieving Performance Speed-up in FPGA

Based Bit-Parallel Multipliers using Embedded

Primitive and Macro support

B. Khurshid and R. N. Mir

doi: 10.11601/ijates.v4i2.115

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 4, No. 2 (2015)

33

out technology dependent optimizations of fixed-point

multipliers by modifying the coding strategy at the design

entry phase. This is achieved by writing functional and

synthesizable codes that involve direct primitive and macro

instantiations. This requires detailed information about the

FPGA target family that is being used and the primitives

that are supported. In our study different primitives have

been used and system functionality has been distributed in a

way that utilizes these components with perfect mappings

rather than writing a functional code and allowing the

synthesizer to distribute the logic through inferences. The

study focuses on Spartan-6, Virtex-4 and Virtex-5 families.

Detailed analysis is carried out and it is concluded that by

using primitive instantiations a subsequent improvement in

performance can be achieved. This is achieved without

having to alter the data-time relation of the algorithm under

consideration. The only tradeoff is that the design entry gets

complicated.

The rest of the paper is as follows. Section II briefly

discusses the fixed-point bit-parallel multipliers that have

been considered in this work. Section III lists the primitives

that have been used in this work. A brief description about

each primitive is provided. Section IV carries out the actual

synthesis and implementation. Conclusions are drawn in

section V and references are listed at last.

II. BIT-PARALLEL MULTIPLIERS

In parallel multipliers number of partial products to be

added is the main parameter that determines the

performance of the multiplier. Bit-parallel multipliers

process one whole word of the input sample each clock

cycle and are ideal for high-speed applications. The

multiplication process is carried out as shown in figure 1. In

this paper three different bit-parallel multipliers are

considered viz. Parallel ripple-carry array multipliers;

Parallel carry-save array multipliers and Baugh-Wooley

multipliers. The details of these multipliers could be found

in [5]. The operands in each case are assumed to be in fixed-

point 2’s complement representation. Such a representation

ensures a correct final result even if there is an intermediate

overflow [5].

III. FPGA PRIMITIVES

Primitives are the components that make an FPGA. The

exact nature of a primitive may vary from family to family.

In this section we briefly describe the primitives that are

used in this work. These belong to the Spartan-6, Virtex-4

and Virtes-5 families.

A. BUFG [38]

This design element is a high-fan-out global clock

buffer that connects signals to the global routing resources

for low skew distribution of the signal. BUFGs are typically

used on clock nets as well other high fan-out nets like

sets/resets and clock enables. The primitive is supported by

all the three families under consideration.

B. FDSE [38]

FDSE is a single D-type flip-flop with clock enable and

synchronous set. The synchronous set input, when high,

overrides the clock enable input and sets the output high

during the low-to-high clock transition. The data is loaded

into the flip-flop when set is low and clock enable is high

during the low-to-high clock transition. The primitive is

supported by all the three families under consideration.

C. LUT4_L [38]

This design element is a 4-bit look-up table (LUT) with

a local output that is used to connect to another output

within the same configurable logic block (CLB). The

primitive is supported by all the three families under

consideration.

D. LUT6_2 [38]

This design element is a 6-input, 2-output LUT that can

implement any two 5-input logic functions with shared

inputs, or implement a 6-input logic function and a 5-input

logic function with shared inputs and shared logic values.

The primitive is not supported by the Virtex-4 logic family.

E. CARRY4 [38]

This primitive represents the fast carry logic for a slice.

The carry chain consists of a series of four multiplexers and

four XOR gates that connect to the other LUTs in the slice

via dedicated routes to form more complex functions. The

fast carry logic is useful for building arithmetic functions

like adders, counters, subtractors etc. The primitive is not

supported by the Virtex-4 logic family.

F. MULT_AND [38]

MULT_AND is an AND component used exclusively

for building fast and smaller multipliers. The primitive is

only supported by the Virtex-4 logic family.

G. MUXCY_L [38]

This primitive is a 2-to-1 multiplexer for carry logic and

is used to implement a 1-bit high-speed carry propagate

function. The primitive is only supported by the Virtex-4

logic family.

H. XORCY [38]

XORCY is a special XOR element with general output

that generates faster and smaller arithmetic functions. The

primitive is only supported by the Virtex-4 logic family.

I. DSP48 [38]

This design element is a versatile, scalable, hard IP block

that allows for the creation of compact, high-speed,

arithmetic-intensive operations, such as those seen for many

DSP algorithms. Some of the functions capable within the

block include multiplication, addition, subtraction,

accumulation, shifting, logical operations, and pattern

detection. The primitive is supported by all the three

families under consideration.

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 4, No. 2 (2015)

34

Figure 1 Tabular form for Parallel Array multiplication

IV. SYNTHESIS AND IMPLEMENTATION

A. Methodology

The implementation in this work targets three different

FPGA families viz. Spartan-6, Virtex-4 and Virtex-5. Only

LX series has been considered as it is apt for general logic

applications. The implementation is carried out for an input

operand length varying from 4 to 32 bits. The parameters

considered are resource utilization, timing and dynamic

power dissipation. Resource utilization is considered in

terms of on chip FPGA components used. Timing refers to

the clock speed of a design and is limited by the setup time

of the input/output registers, propagation and routing delays

associated with the critical path, clock to output time

associated with the flip flops and the skew between the

launch (input) register and the capture (output) register.

Timing analysis is done to provide information about the

speed/throughput of the system. Dynamic power dissipation

is related to charging and discharging of node capacitances

along the different switching elements. To ensure a fair

comparison, similar test benches have been used for all the

implemented designs i.e. the input statistics remain the same

in each case. The initial design entry is done using VHDL.

The coding strategy is based on instantiation of different

primitives listed in section III. However, for comparison we

have also followed the conventional inferential approach.

The constraints relating to the period and offsets are duly

provided and a complete timing closure is ensured. The

design synthesis, mapping and translation are carried out in

Xilinx ISE 12.1 and the simulator database is then analyzed

for on-chip resources, throughput and timing metrics. Power

metrics are obtained using Xpower analyzer.

B. Experimental results

As mentioned earlier, for each implementation a

traditional inferential coding strategy is followed. Synthesis

based on this coding strategy utilizes the FPGA resources as

general logic elements. This will serve as a standard against

which other implementations will be compared. Metrics

associated with the instantiation of various primitives are

named as per the primitives used. Tables 1, 2 and 3 give a

comparison of the on chip resources utilized by different

primitives for an input word-length of 16 bits. The

architectures considered are the bit-parallel RCA, CSA and

BW multipliers. The target device is XC6SLX16 from

Spartan-6.

It is observed that by instantiating primitives and macro

blocks there is a subsequent reduction in the on-chip

resources being utilized by a particular structure. This is

achieved without having to modify any architectural details.

The most area efficient structure is obtained with LUT6_2

primitive because of its ability to implement both sum and

carry in a single LUT. LUT4-L uses two different 4 input

LUTs to implement the sum and the carry parts in each

processing cell of the array. The CARRY4 and DSP48

primitives provide fast carry logic for each row. Their

inclusion prominently will affect the timing properties of the

structure. However, there is still some reduction in the slices

being utilized when compared to the basic structure

generated through inferential coding style. Further analysis

is carried out for different multiplier structures for varying

word-lengths and different target families. The metrics

obtained from the synthesizer database are then plotted as a

function of operand word-lengths and are presented in

figures 2, 3 and 4. For simplicity we have considered only

the occupied slices in each case. Virtex-4 family does not

support the LUT6_2 primitive and hence does not appear in

the plot. Further the fast carry logic in this family is

implemented using a combination of MULT_AND and

MUXCY_L primitives.

TABLE 1

RESOURCE UTILIZATION FOR RCA MULTIPLIER ON SPARTAN-6

On-chip

resource

Inferential

coding

style

LUT4_L LUT6_2 CARRY4 DSP48*

Registers 32 32 32 32 32

LUTs 943 359 286 385 168

Slices 361 99 82 143 133

* DSP48 uses additional resources in the form of 16 DSP48A1 blocks

TABLE 2

RESOURCE UTILIZATION FOR CSA MULTIPLIER ON SPARTAN-6

On-chip

resource

Inferential

coding

style

LUT4_L LUT6_2 CARRY4 DSP48*

Registers 32 32 32 32 32

LUTs 686 420 343 385 525

Slices 197 101 92 127 163

* DSP48 uses additional resources in the form of 16 DSP48A1 blocks

TABLE 3

RESOURCE UTILIZATION FOR BW MULTIPLIER ON SPARTAN-6

On-chip

resource

Inferential

coding

style

LUT4_L LUT6_2 CARRY4 DSP48*

Registers 32 32 32 32 32

LUTs 583 492 373 407 500

Slices 206 128 109 134 174

* DSP48 uses additional resources in the form of 16 DSP48A1 blocks

A7 A6 A5 A4 A3 A2 A1 A0

B7 B6 B5 B4 B3 B2 B1 B0

A7B0 A6B0 A5B0 A4B0 A3B0 A2B0 A1B0 A0.B0

A7B1 A6B1 A5B1 A4B1 A3B1 A2B1 A1B1 A0.B1

A7B2 A6B2 A5B2 A4B2 A3B2 A2B2 A1B2 A0.B2

A7B3 A6B3 A5B3 A4B3 A3B3 A2B3 A1B3 A0.B3

A7B4 A6B4 A5B4 A4B4 A3B4 A2B4 A1B4 A0.B4

A7B5 A6B5 A5B5 A4B5 A3B5 A2B5 A1B5 A0.B5

A7B6 A6B6 A5B6 A4B6 A3B6 A2B6 A1B6 A0.B6

A7B7 A6B7 A5B7 A4B7 A3B7 A2B7 A1B7 A0.B7

P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 4, No. 2 (2015)

35

Figure 2 Resource utilization for RCA multiplier on different FPGA families

Figure 3 Resource utilization for CSA multiplier on different FPGA families

Figure 4 Resource utilization for BW multiplier on different FPGA families

It is observed that in each case there is a substantial

reduction in the area when the structures are generated

through instantiation of different primitive components.

Also different primitives give different area performances

depending upon the logic they implement. If area is the

parameter of interest LUT6_2 gives the best performance.

The use of primitives LUT4_L and LUT6_2 although

reduces the overall logic being used but the logic associated

with the critical path of the structure is increased. This is

indicated by the increase in the number of logic levels in the

critical path. As a result the logic delay and the associated

route delay increases. However, the fast carry logic

associated with the CARRY4 primitive makes the addition

process really fast resulting in reduced route delays. For

Virtex-4 devices the fast carry logic is implemented using a

combination of MULT_AND, MUXCY_L and XORCY

primitives. The use of CARRY4 logic enhances the speed

only in case of RCA multipliers as the critical path is limited

by the rippling of the generated carry in each cell. However,

with CSA and BW multipliers there is no rippling of the

carry in the main structure. The only part of the multiplier

that is enhanced using the fast carry logic is the vector

merging adder (VMA). Tables 4, 5 and 6 provide a

comparison of the maximum achievable clock rates post

implementation for a word length of 16 bits. The target

family is Spartan-6. The structures generated through

instantiation of different primitives tend to have better

timing closures in terms of the relationship between an

external clock pad and its associated data-in or data-out pad.

This is indicated by the offset-in and offset-out metrics from

the timing database of the synthesizer. The values are

included in the tables and are indicative of the fact that with

primitive instantiations better timing behavior is achieved.

TABLE 4

TIMING ANALYSIS FOR RCA MULTIPLIER ON SPARTAN-6

Timing

Parameter

Inferential

coding

style

LUT4_L LUT6_2 CARRY4 DSP48

Maximum

frequency
(MHz)

30.67 23.186 23.89 38.7 144.38

Minimum

available

offset-in
(ns)

5.112 5.018 2.568 2.118 2.543

Minimum

available

offset-out

(ns)

11.727 8.488 10.047 6.782 2.765

TABLE 5
TIMING ANALYSIS FOR CSA MULTIPLIER ON SPARTAN-6

Timing

Parameter

Inferential

coding

style

LUT4_L LUT6_2 CARRY4 DSP48

Maximum

frequency

(MHz)

50.182 29.3 27.42 53.987 167.87

Minimum
available

offset-in

(ns)

6.017 5.245 3.28 2.87 2.521

Minimum

available

offset-out
(ns)

11.851 9.335 8.813 10.474 4.78

6
5

1
0

3

3
6

1

5
6

2

2
3

6
6 9

9

3
8

7

2
1

5
8 8

2

3
5

6

4
2

9
1

1
4

3

4
3

4

3
7

8
7

1
3

3

4
2

1

4 8 1 6 3 2

N
O

 O
F

 O
C

C
U

P
IE

D
 S

L
IC

E
S

WORD-LENGTH

S PARTAN-6

INFERENTIAL_CODING LUT4_L LUT6_2 CARRY4 DSP48

6
8 1
1

0

4
2

9

1
6

2
0

4
2 6
3

2
5

0

1
0

0
6

5
9 1
0

6

3
9

3

1
3

4
5

4
6 8
4

3
5

3

1
4

5
2

4 8 1 6 3 2

N
O

. O
F

 O
C

C
U

P
IE

D
 S

L
IC

E
S

WORD-LENGTH

VIRTEX-4

INFERENTIAL_CODING LUT4_L MULT_AND/XORCY DSP48

4
5 1

0
2

3
8

4

1
5

9
7

1
8 4
5 1

0
8

4
6

9

1
7 2
9 8

9

4
2

5

1
5 2
8 6
5

3
8

7

2
6 6
4

2
1

3

5
5

2

4 8 1 6 3 2

N
O

 O
F

 O
C

C
U

P
IE

D
 S

L
IC

E
S

WORD-LENGTH

VIRTEX-5

INFERENTIAL_CODING LUT4_L LUT6_2 CARRY4 DSP48

1
6 4

0

1
9

7

4
2

3

9 2
4

1
0

1

2
5

7

7 2
0

9
2

2
3

9

1
4 3

2

1
2

7

3
5

4

1
7 3

8

1
6

3

5
2

3

4 8 1 6 3 2

N
O

 O
F

 O
C

C
U

P
IE

D
 S

L
IC

E
S

WORD-LENGTH

S PARTAN-6

4
9 9

7

3
0

5

8
9

7

2
1 4
1

1
8

9

5
0

8

3
4

8
7

2
5

6

7
5

6

3
8

9
7

2
7

5

7
9

1

4 8 1 6 3 2

N
O

 O
F

 O
C

C
U

P
IE

D
 S

L
IC

E
S

WORD-LENGTH

VIRTEX-4

3
2 6
8

2
7

6

1
1

9
3

1
8 3
6

1
5

0

6
1

5

1
6 3
3

1
5

2

5
1

6

2
5 5
7

2
2

3

8
9

8

2
8 6

7

2
7

5

9
3

1

4 8 1 6 3 2

N
O

 O
F

 O
C

C
U

P
IE

D
 S

L
IC

E
S

WORD-LENGTH

VIRTEX-5

1
6 3

4

2
0

6

4
9

5

9

2
4

1
2

8

3
8

5

7

2
1

1
0

9

4
0

7

1
3 2

9

1
3

4

4
2

3

1
5 3

0

1
5

4

4
6

3

4 8 1 6 3 2

N
O

 O
F

 O
C

C
U

P
IE

D
 S

L
IC

E
S

WORD-LENGTH

S PARTAN-6

4
9 8
7

3
7

4

1
1

4
6

2
8 6
4

2
8

0

9
6

9

3
4 7

7

3
3

4

1
0

3
4

3
5 8

2

3
5

4

1
0

6
3

4 8 1 6 3 2

N
O

 O
F

 O
C

C
U

P
IE

D
 S

L
IC

E
S

WORD-LENGTH

VIRTEX-4

2
8 4
8

2
6

0

1
0

4
9

1
5 3
6

1
3

5

5
7

4

1
4 3
2

1
2

5

5
1

7

2
4 3
9

1
9

3

8
9

8

2
5 4
2

2
1

4

9
6

3

4 8 1 6 3 2

N
O

 O
F

 O
C

C
U

P
IE

D
 S

L
IC

E
S

WORD-LENGTH

VIRTEX -5

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 4, No. 2 (2015)

36

TABLE 6

TIMING ANALYSIS FOR BW MULTIPLIER ON SPARTAN-6

Timing

Parameter

Inferential

coding

style

LUT4_L LUT6_2 CARRY4 DSP48

Maximum

frequency
(MHz)

50.117 29.36 29.216 52.987 165.43

Minimum

available

offset-in
(ns)

6.346 5.154 3.052 2.66 2.543

Minimum

available
offset-out

(ns)

10.095 9.517 8.531 9.987 4.87

The results also indicate that CSA and BW multipliers

have higher operating frequencies when compared to the

RCA multiplier structures. Further analysis is carried out by

plotting the maximum achievable speed against the operand

word lengths for different structures and for different target

families. The results are shown in figures 5, 6 and 7. Again

for simplicity only the maximum achievable speeds have

been considered.

It is observed from the plots that the use of fast carry

logic results in faster execution and thus higher clock

frequencies are achievable. The effect is more prominent in

RCA multiplier as the carry rippling is completely

eliminated.

Finally dynamic power dissipation for different structures

is considered. Because an FPGA is programmable, it is only

natural to look into minimizing the power dissipated. The

dynamic power dissipation in a CMOS circuit is a function

of the input voltage (V
2
), the clock frequency (fclk), the

switching activity (α), the total capacitance seen by a

particular node (CL) and the number of elements used (σ).

The analysis was done for a constant supply voltage and at

maximum operating frequency for each structure. To ensure

a reasonable comparison the test vectors provided during

post route simulation were selected to represent the worst

case scenario for data coming into the multiplier block.

Same test bench was used for all the synthesized structures.

The design node activity from the simulator database along

with the power constraint file (PCF) was used for power

analysis in the Xpower analyzer tool. Table 7 shows the

power dissipated in various resources for RCA multiplier for

operand length of 16 bits. The targeted device is Spartan-6.

Tables 8 and 9 show the same metrics for CSA and BW

structures.

Figure 5 Maximum clock frequency comparisons for RCA multiplier on different FPGA families

Figure 6 Maximum clock frequency comparisons for CSA multiplier on different FPGA families

Figure 7 Maximum clock frequency comparisons for BW multiplier on different FPGA families

TABLE 7
POWER DISSIPATION FOR RCA MULTIPLIER ON SPARTAN-6

FPGA

resource

Power dissipated (mW)

Inferential

coding style

LUT4_L LUT6_2 CARRY4 DSP48

Clock 0.54 0.47 0.47 0.64 2.8

Logic 2.34 1.64 1.78 1.4 0.87

Signals 4.41 1 0.88 1.16 1.23

I/Os 6.01 5.16 6.39 4.63 2.54

Total 13.3 8.27 9.52 7.83 7.44

TABLE 8
POWER DISSIPATION FOR CSA MULTIPLIER ON SPARTAN-6

FPGA

resource

Power dissipated (mW)

Inferential

coding style
LUT4_L LUT6_2 CARRY4 DSP48

Clock 1.24 0.7 0.81 1.24 3.25

Logic 3.14 2.18 2.27 1.14 0.69

Signals 2.66 1.41 1.2 1.66 1.63

I/Os 5.44 5.35 5.12 4.44 2.31

Total 12.48 9.64 9.4 8.48 7.88

9
7

.3
2

4

5
3

.1

3
0

.6
7

1
3

.9
5

6

9
6

.7
8

9

5
3

.8
3

2
3

.1
8

6

1
0

.6
5

3

9
7

.0
2

4

5
4

.7
7

2
3

.8
9

1
0

.5
6

1
1

4
.4

53

6
2

.7
3

3
8

.7

1
7

.8
5

3
1

6
.8

1

2
4

2
.5

8

1
4

4
.3

8

7
8

.4
9

4 8 1 6 3 2

M
A

X
 C

L
O

C
K

 F
R

E
Q

U
E

N
C

Y
 (
M

H
Z

)

WORD-LENGTH

S PARTAN-6

1
2

8
.4

6

7
6

.8

4
7

1
8

.2
6

1
1

4
.4

5

7
0

.6
2

6

4
0

.3
3

1
6

.6

1
3

0
.3

4

7
8

.4
6

4
9

.9
4

2
1

.0
4

4
0

5
.3

4

3
1

9
.5

1

2
2

4
.6

7

1
0

2
.7

6

4 8 1 6 3 2

M
A

X
 C

L
O

C
K

 F
R

E
Q

U
E

N
C

Y
 (
M

H
Z

)

WORD_LENGTH

VIRTEX-4

1
5

6
.7

89

9
0

.3

5
0

.0
0

5

2
4

.0
4

1
3

5
.4

5

7
2

.7
2

4
2

.7
9

1
6

.7
5

1
2

1
.4

56

6
7

.0
2

8

3
8

.3
6

1
6

.7
1

1
6

7
.9

9
4

.7
5

5
4

.3
7

2
9

.0
6

5
3

9
.6

7

4
1

2
.4

3

2
9

9
.6

7

1
3

5
.5

4

4 8 1 6 3 2

M
A

X
 C

L
O

C
K

 F
R

E
Q

U
E

N
C

Y
 (
M

H
Z

)

WORD-LENGTH

VIRTEX-5

1
1

4
.7

8

8
9

.5
4

5
0

.1
8

2

2
3

.2
2

8
2

.3
4

5
7

.2

2
9

.3

1
4

.4
5

8
1

.9
8

5
4

.5
3

2
7

.4
2

1
4

.0
9

1
1

8
.0

07

9
3

.7
6

5
3

.9
8

7

2
6

.2
6

4
2

3
.7

6

3
0

2
.3

1
6

7
.8

7

9
8

.7
6

4 8 1 6 3 2

M
A

X
 C

L
O

C
K

 F
R

E
Q

U
E

N
C

Y
 (
M

H
Z

)

WORD-LENGTH

S PARTAN-6

1
2

4
.7

8

8
9

.5
9

6
0

.7

3
3

.9
8

1
1

2
.3

4

9
1

.7

5
3

.0
1

2
7

.6
4

3

1
2

8
.0

07

9
3

.7
6

6
4

.9
8

7

3
5

.2
6

4
6

5
.9

8

3
2

4
.6

1

2
7

8
.5

4

1
2

3
.5

1

4 8 1 6 3 2

M
A

X
 C

L
O

C
K

 F
R

E
Q

U
E

N
C

Y
 (
M

H
Z

)

WORD-LENGTH

VIRTEX-4

1
7

8
.8

7

1
2

9
.2

7
1

.6
5

4
9

.5

1
2

6
.7

8

8
0

.7

5
0

.3
7

2
5

.0
2

4

1
2

6
.6

8
0

.5
8

5
0

.0
5

7

2
3

.6
7

1
8

2
.4

7

1
3

2
.0

4

7
4

.7
6

5
2

.2
3

6
0

2
.4

3

4
9

8
.7

1

3
6

7
.8

1

1
8

9
.2

9

4 8 1 6 3 2

M
A

X
 C

L
O

C
K

 F
R

E
Q

U
E

N
C

Y
 (
M

H
Z

)

WORD-LENGTH

VIRTEX-5

1
0

8
.7

8

7
7

.0
5

5
0

.1
1

7

2
5

.3
3

8
9

.3
4

6
1

.5
3

2
9

.3
6

1
4

.7

8
7

.9
8

5
7

.7

2
9

.2
1

6

1
4

.6
5

6

1
1

2
.0

07

8
1

.7
6

5
2

.9
8

7

2
8

.2
6

3
9

8
.5

4

2
8

9
.7

1

1
5

4
.3

8

8
8

.5
1

4 8 1 6 3 2

M
A

X
 C

L
O

C
K

 F
R

E
Q

U
E

N
C

Y
 (
M

H
Z

)

WORD-LENGTH

S PARTAN-6

1
4

4
.7

8

1
1

1
.9

2

6
0

.8
6

3
4

.4
2

1
3

2
.3

4

1
0

2
.5

7

5
8

.1
2

6

3
0

.5
3

1
4

8
.0

07

1
1

3
.7

6

6
4

.9
8

7

3
8

.2
6

4
9

5
.8

1

3
7

1
.6

1

2
9

9
.9

4

1
5

3
.5

1

4 8 1 6 3 2

M
A

X
 C

L
O

C
K

 F
R

E
Q

U
E

N
C

Y
(M

H
Z

)

WORD-LENGTH

VIRTEX-4

1
8

8
.8

7

1
3

6
.4

2

7
2

.2

5
0

.1
6

51
3

6
.7

8

8
8

.1
8

5
0

.0
6

2
4

.3
2

2

1
3

4
.6

8
2

.4
1

3

5
0

.2
4

1

2
4

.0
5

1
9

2
.4

7

1
4

0
.0

4

7
6

.7
6

5
4

.2
3

6
4

3
.4

3

5
3

1
.7

1

3
9

9
.8

1

2
0

9
.2

9

4 8 1 6 3 2

M
A

X
 C

L
O

C
K

 F
R

E
Q

U
E

N
C

Y
 (
M

H
Z

)

WORD-LENGTH

VIRTEX-5

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 4, No. 2 (2015)

37

TABLE 9

POWER DISSIPATION FOR BW MULTIPLIER ON SPARTAN-6

FPGA

resource

Power dissipated (mW)

Inferential

coding style

LUT4_L LUT6_2 CARRY4 DSP48

Clock 1.22 0.63 0.88 1.24 3.43

Logic 2.71 2.25 2.02 1.14 0.67

Signals 3.29 1.39 1.11 1.96 1.97

I/Os 4.99 6 5.75 4.42 2.36

Total 12.21 10.27 9.76 8.76 8.43

The power dissipated in the clocking resources varies

with the clock activity (clock frequency) as provided in the

PCF. Since each structure is operated at its maximum

operating frequency, the power dissipated by the clock

varies accordingly and has a maximum value for the

multiplier based on CARRY4 and DSP48 primitives.

However, the capacitance CL, which needs to be driven at

each toggling node, varies with the type, fan-out, and

capacitance of the logic and routing resources used in the

design. The use of primitives through instantiations has a

soothing effect on the fan-out of the non-clocking nets. This

is indicated in table 10 where the average fan-out of non-

clocking nets for different multipliers using different

primitives has been enlisted for a 16-bit operand word-

length. In addition, there is a reduction in the number of

elements (σ) being utilized by different multiplier structures

when designed using direct instantiation of primitives. Thus,

the power dissipated in the logic is reduced and has a

minimum value for CARRY4 and DSP48 primitives. The

reduction in the power dissipation in the signals and I/Os is

indicative of the fact that primitive instantiation also tends to

relax the signal transition rates for the duration of operation.

Further analysis is carried out by plotting the total dynamic

power dissipation as a function of input word-length for

different multiplier structures and for different FPGA

families. The results are shown in figures 8, 9 and 10.
TABLE 10

AVERAGE FAN-OUT OF NON-CLOCKING NETS FOR DIFFERENT
MULTIPLIERS ON SPARTAN-6

Multiplier

design

Average fan-out of non-clock nets

Inferential

coding

style

LUT4_L LUT6_2 CARRY4 DSP48

RCA 5.52 2.94 2.32 1.98 --

CSA 4.75 2.71 2.22 1.78 --

BW 4.78 2.65 2.12 1.66 --

For DSP systems it is more appropriate to quantify the

power efficiency through energy analysis [39]. This gives

idea about the power requirements of a design at a lower

level. Three energy related parameters are defined for

different multiplier designs. These include Energy per

operation (EOP), which is the average amount of energy

required to compute one operation; Energy throughput (ET)

which is the energy dissipated for every output bit processed

and Energy density (ED) which is the energy dissipated per

FPGA slice. Tables 11, 12 and 13 provide these metrics for

different designs. The input operand length in 16 bits and

the target device is from Spartan-6. In each case the critical

path delay is taken as the approximate time to complete one

operation. Further analysis is carried out by plotting the

energy metrics as a function of operand word length for

different multipliers. The plots appear in figures 11, 12 and

13. The target device in each case is XC6SLX16 from

Spartan-6.

Figure 8 Dynamic Power dissipation comparisons for RCA multiplier on different FPGA families

Figure 9 Dynamic Power dissipation comparisons for CSA multiplier on different FPGA families

Figure 10 Dynamic Power dissipation comparisons for BW multiplier on different FPGA families

2
.5

3

5
.1

2

1
3

.3

4
8

.4
8

2
.2

2 5
.0

1 8
.2

7

3
6

.1
2

2
.4

7 5
.4

6 9
.5

2

3
9

.9
4

1
.8

4

3
.4

6 7
.8

3

2
1

.5
6

1
.8 3

.3

7
.4

4

2
3

.2

4 8 1 6 3 2

D
Y

N
A

M
IC

 P
O

W
E

R
 D

IS
S

IP
A

T
E

D
 (
M

W
)

WORD-LENGTH

S PARTAN-6

6
.3

6 1
2

2
4

.2
6

7
3

.3
1

5
.7

6 1
0

.4
9

2
0

.3
9

6
2

.7
9

4
.2

3 8
.9

2

1
8

.1
4

5
6

.7
4

4
.3

7 8
.4

1
8

.4

5
5

.4
8

4 8 1 6 3 2

D
Y

N
A

M
IC

 P
O

W
E

R
 D

IS
S

IP
A

T
E

D
 (

M
W

)

WORD-LENGTH

VIRTEX-4

2
.2

3 7
.3

7

1
5

.5
7

6
4

.3
3

2
.0

0
2

6
.4

8 1
0

.8
5

4
5

.0
7

1
.9

8
7

6
.1

9 1
0

.4
1

3
8

.9
9

1
.5

2
3

5
.8

5 9
.8

5

3
2

.2
9

1
.5

5
.2

5 9
.2

9

3
1

.6
5

4 8 1 6 3 2

D
Y

N
A

M
IC

 P
O

W
E

R
 D

IS
S

IP
A

T
E

D
 (
M

W
)

WORD-LENGTH

VIRTEX-5

2
.7

8 5
.2

9

1
2

.4
8

3
4

.7
4

2
.4

4
.8

9

9
.6

4

3
2

.2
8

2
.2

4 4
.6

7

9
.4

3
1

.3
2

2
.0

1 3
.9

5

8
.4

8

2
8

.4
4

1
.9

7 3
.7

7
.8

8

2
7

.9

4 8 1 6 3 2

D
Y

N
A

M
IC

 P
O

W
E

R
 D

IS
S

IP
A

T
E

D
 (
M

W
)

WORD-LENGTH

S PARTAN-6

7
.7

8

1
3

.4

2
2

.0
9

5
2

.5
1

7
.0

9 1
2

.5

2
1

.7
1

5
1

.2
4

5
.8

9 1
0

.2
3

1
9

.0
8

3
9

.5
8

5
.7

8 9
.7

8

1
8

.3
4

3
8

.2

4 8 1 6 3 2

D
Y

N
A

M
IC

 P
O

W
E

R
 D

IS
S

IP
A

T
E

D
 (
M

W
)

WORD-LENGTH

VIRTEX-4

3
.8

7 7
.0

4

1
3

.6
1

3
7

.1
7

3
.6

6
.1

7

1
1

.7
8

3
3

.7
8

3
.4

8 6
.0

6

9
.8

7

3
0

.7
7

3
.1

3 5
.3

4

8
.7

6

2
8

.4
4

3
.0

1 5
.2

8
.1

2
7

.4
3

4 8 1 6 3 2

D
Y

N
A

M
IC

 P
O

W
E

R
 D

IS
S

IP
A

T
E

D
 (
M

W
)

WORD-LENGTH

VIRTEX-5

2
.6

8

4
.4

5

1
2

.2
1

3
9

.0
7

2
.6 4

.7
1

1
0

.2
7

3
1

.3
2

2
.4

4 4
.4

8

9
.7

6

2
8

.2
1

2
.2 3

.6
5

8
.7

6

2
6

.4
4

2
.1

5

3
.3

8
.4

3

2
5

.3
4

4 8 1 6 3 2

D
Y

N
A

M
IC

 P
O

W
E

R
 D

IS
S

IP
A

T
E

D
 (

M
W

)

WORD-LENGTH

S PARTAN-6

7
.3

4

1
2

.9
5

2
3

.7
5

5
5

.1
3

7
.0

0
1 1
1

.4
1

2
0

.9
7

5
2

.2
3

5
.8

9 1
0

.4
5

1
8

.5
6

4
4

.9
8

5
.7

9
.7

1
7

.2
3

4
1

.8
7

4 8 1 6 3 2

D
Y

N
A

M
IC

 P
O

W
E

R
 D

IS
S

IP
A

T
E

D
 (
M

W
)

WORD-LENGTH

VIRTEX-4

3
.8

7 6
.9

4

1
3

.6
1

3
7

.1
7

3
.4

8 6
.1

7

1
1

.7
8

3
3

.7
8

3
.3

8 6
.0

6

9
.8

7

3
0

.7
7

3
.0

8 5
.3

4

8
.7

6

2
8

.4
4

3

5
.1

8
.2

1

2
6

.8
9

4 8 1 6 3 2

D
Y

N
A

M
IC

 P
O

W
E

R
 D

IS
S

IP
A

T
E

D
 (
M

W
)

WORD-LENGTH

VIRTEX-5

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 4, No. 2 (2015)

38

The plots clearly reveal that the structures based on

primitive instantiations have high power efficiency. The

energy requirement is minimum for the structures based on

CARRY4 and DSP48 primitives. Also, note that the effect is

more prominent for RCA multipliers as the entire structure

is synthesized using the CARRY4 primitive, where as in the

CSA and BW multipliers only the VMA part is based on the

fast carry logic.

TABLE 12

ENERGY ANALYSIS FOR RCA MULTIPLIER ON SPARTAN-6

Energy

parameter

Inferential

coding

style

LUT4_L LUT6_2 CARRY4 DSP48*

EOP (pJ) 433.64 356.68 398.49 202.32 51.530

ET (pJ/bit) 27.103 22.29 24.90 12.645 3.220

ED

(pJ/slice)

1.2012 3.602 4.859 1.4148 0.387

TABLE 12

ENERGY ANALYSIS FOR CSA MULTIPLIER ON SPARTAN-6

Energy

parameter

Inferential

coding

style

LUT4_L LUT6_2 CARRY4 DSP48*

EOP (pJ) 248.694 329.01 342.8 157.07 46.94

ET (pJ/bit) 15.543 20.56 21.42 9.81 2.93

ED
(pJ/slice)

1.2624 3.25 3.72 1.23 0.28

TABLE 13

ENERGY ANALYSIS FOR BW MULTIPLIER ON SPARTAN-6

Energy

parameter

Inferential

coding

style

LUT4_L LUT6_2 CARRY4 DSP48*

EOP (pJ) 243.62 349.79 334.06 165.33 54.60

ET (pJ/bit) 15.22 21.86 20.87 10.33 3.41

ED

(pJ/slice)

1.18 2.73 3.06 1.23 0.35

Figure 11 Energy analyses for RCA multiplier on Spartan-6 FPGA family

Figure 12 Energy analyses for CSA multiplier on Spartan-6 FPGA family

Figure 13 Energy analyses for BW multiplier on Spartan-6 FPGA family

V. CONCLUSIONS AND FUTURE SCOPE

This paper implemented the bit-parallel fixed-point

multipliers in three different structures. The hardware

implementations presented in this paper were based on the

use of various in built primitives and macro blocks inherent

to modern FPGAs. The analysis and the experimental results

carried out in this paper clearly indicate that a considerable

improvement in performance is indeed achievable by using

these primitives. Further the design entry used in this paper

was based on instantiations rather than inferences. By using

a coding strategy based on instantiations the on-chip FPGA

components can be used in a manner that fully utilizes their

potential. Also a judicious choice of primitives will ensure

that a particular performance parameter is enhanced as may

be required by any particular application. This paper

deliberately ruled out any architectural modification that

may be carried out at the top level of the design. The idea

was to present a clear cut analysis that will provide an

insight about the performance speed-up that may be

achieved by utilizing the huge primitive support provided by

FPGA families. Currently the authors are working on

achieving a performance speed-up by using a combination

of architectural modifications and embedded primitives in

FPGAs.

REFERENCES

[1]. G. L. Narayan and B. Venkataramani, “ Optimization Techniques for

FPGA based Wave Pipelined DSP Blocks,” IEEE Transc.Very Large

Scale Integr. (VLSI) syst., vol. 13, No. 7, pp. 783-792, July 2005.

2
5

.9
9

6

9
6

.4
2

2

4
3

3
.6

4
9

3
4

7
3

.7
7

5

2
2

.9
3

6

9
3

.0
7

1

3
5

6
.6

8
1

3
3

9
0

.5
9

4

2
5

.4
5

8

9
9

.6
9 3
9

8
.4

9
3

3
7

8
2

.1
9

7

1
6

.0
7

6

5
5

.1
5

7

2
0

2
.3

2
6

1
2

0
7

.8
4

3

5
.6

8
2

1
3

.6
0

4

5
1

.5
3

1

2
9

5
.5

7
9

4 8 1 6 3 2

E
N

E
R

G
Y

 P
E

R
 O

P
E

R
A

T
IO

N

WORD-LENGTH

S PARTAN-6

6
.4

9
9

1
2

.0
5

3 2
7

.1
0

3

1
0

8
.5

5
5

5
.7

3
4

1
1

.6
3

4

2
2

.2
9

3

1
0

5
.9

5
6

6
.3

6
4

1
2

.4
6

1

2
4

.9
0

6

1
1

8
.1

9
4

4
.0

1
9

6
.8

9
5

1
2

.6
4

5

3
7

.7
4

5

1
.4

2

1
.7 3
.2

2
1

9
.2

3
7

4 8 1 6 3 2

E
N

E
R

G
Y

 T
H

R
O

U
G

H
P

U
T

WORD-LENGTH

S PARTAN-6

0
.4 0

.9
3

6

1
.2

0
1

6
.1

8
1

0
.9

9
7

1
.4

1

3
.6

0
3

8
.7

6
1

1
.2

1
2

1
.7

1
9

4
.8

6

1
0

.6
2

4

0
.3

8
3

0
.6

0
6

1
.4

1
5 2

.7
8

3

0
.1

5
4

0
.1

5
6

0
.3

8
7

0
.7

0
2

4 8 1 6 3 2

E
N

E
R

G
Y

 D
E

N
S

IT
Y

WORD-LENGTH

S PARTAN-6

2
4

.2
2

5
9

.0
8 2
4

8
.6

9
5

1
4

9
6

.1
2

4

2
9

.1
4

7

8
5

.4
9 3

2
9

.0
1

2
2

3
3

.9
1

2
7

.3
2

4

8
5

.6
4

1

3
4

2
.8

1
5

2
2

2
2

.8
5

3

1
7

.0
3

3

4
2

.1
2

9

1
5

7
.0

7
5

1
0

8
3

.0
1

6

4
.6

4
9

1
2

.2
3

9

4
6

.9
4

1

2
8

2
.5

0
3

4 8 1 6 3 2

E
N

E
R

G
Y

 P
E

R
 O

P
E

R
A

T
IO

N

WORD-LENGTH

S PARTAN-6

6
.0

5
5

7
.3

8
5 1

5
.5

4
3

4
6

.7
5

4

7
.2

8
7

1
0

.6
8

6 2
0

.5
6

3

6
9

.8
1

6
.8

3
1

1
0

.7
0

5 2
1

.4
2

6

6
9

.4
6

4

4
.2

5
8

5
.2

6
6

9
.8

1
7

3
3

.8
4

4

1
.1

6
2

1
.5

3

2
.9

3
4

8
.8

2
8

4 8 1 6 3 2

E
N

E
R

G
Y

 T
H

R
O

U
G

H
P

U
T

WORD-LENGTH

S PARTAN-6

1
.5

1
4

1
.4

7
7

1
.2

6
2

3
.5

3
7

3
.2

3
9

3
.5

6
2

3
.2

5
8

8
.6

9
2

3
.9

0
3

4
.2

8
2

3
.7

2
6

9
.3

0
1

1
.2

1
7

1
.3

1
7

1
.2

3
7

3
.0

5
9

0
.2

7
3

0
.3

2
2

0
.2

8
8

0
.5

4

4 8 1 6 3 2

E
N

E
R

G
Y

 D
E

N
S

IT
Y

WORD-LENGTH

S PARTAN-6

2
4

.6
3

7

5
7

.7
5

5

2
4

3
.6

3

1
5

4
2

.4
4

2
9

.1
0

2

7
6

.5
4

8 3
4

9
.7

9
6

2
1

3
0

.6
1

2

2
7

.7
3

4

7
7

.6
4

3

3
3

4
.0

6
4

1
9

2
4

.8
0

9

1
9

.6
4

2

4
4

.6
4

3

1
6

5
.3

2
4

9
3

5
.5

9
8

5
.3

9
5

1
1

.3
9

1

5
4

.6
0

6

2
8

6
.2

9
5

4 8 1 6 3 2

E
N

E
R

G
Y

 P
E

R
 O

P
E

R
A

T
IO

N

WORD-LENGTH

S PARTAN-6

6
.1

5
9

7
.2

1
9 1

5
.2

2
7

4
8

.2
0

1

7
.2

7
6

9
.5

6
9

2
1

.8
6

2

6
6

.5
8

2

6
.9

3
3

9
.7

0
5

2
0

.8
7

9

6
0

.1
5

4
.9

1

5
.5

8 1
0

.3
3

3

2
9

.2
3

7

1
.3

4
9

1
.4

2
4

3
.4

1
3 8
.9

4
7

4 8 1 6 3 2

E
N

E
R

G
Y

 T
H

R
O

U
G

H
P

U
T

WORD-LENGTH

S PARTAN-6

1
.5

4

1
.6

9
9

1
.1

8
3

3
.1

1
6

3
.2

3
4

3
.1

9

2
.7

3
3

5
.5

3
4

3
.9

6
2

3
.6

9
7

3
.0

6
5

4
.7

2
9

1
.5

1
1

1
.5

3
9

1
.2

3
4

2
.2

1
2

0
.3

6

0
.3

8

0
.3

5
5

0
.6

1
8

4 8 1 6 3 2

E
N

E
R

G
Y

 D
E

N
S

IT
Y

WORD-LENGTH

S PARTAN-6

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 4, No. 2 (2015)

39

[2]. M. A. Ashour and H. I. Saleh, “An FPGA Implementation guide for

some different types of Serial-Parallel Multiplier Structures,”

Microelectronics Journal, vol. 31, pp. 161-168, 2000.

[3]. K. Compton, S. Hauck, “Reconfigurable Computing: A survey of

Systems and Software,” ACM Computing Surveys, vol. 34, No. 2, pp.

171-210, June 2002.

[4]. R. Tessier, W. Burleson, “Reconfigurable Computing and Digital

Signal Processing: Past, Present and Future,” Programmable Digital

Signal Processors, Yu Wen Hue d, Marcel Dekker, pp. 147-186,

2002.

[5]. Keshab K. Parhi, "VLSI Digital Signal Processing Systems Design

and Implementation," Wiley, 1999.

[6]. S. Shanthala and S. Y. Kulkarni, “VLSI Design and Implementation

of Low Power MAC Unit with Block Enabling Technique,” European

Journal of Scientific Research, ISSN 1450-216X, vol. 30, No. 4, pp.

620-630, 2009.

[7]. K. H. Chen, Y. H. Chen and Y. S. Chu, “A Versatile Multimedia

Functional Unit Design using the Spurious Power Suppression

Technique,” in Proc. IEEE Asian Solid-State Circuits conf., 2006, pp.

111-114.

[8]. Roger Woods, John McAllister, Gaye Lightbody and Ying Yi,

“FPGA-based Implementation of Signal Processing Systems,” Wiley,

2008.

[9]. Z. Guo, W. Najjar, F. Vahid and K. Vissers, “A Quantitative Analysis

of the Speed up Factors of FPGAs over Processors,” in Proc. Int.

Symp. on FPGAs, ACM Press, 2004.

[10]. K. Underwood “FPGAs vs. CPUs: Trends in Peak Floating-Point

Performance,” in Proc. Int. Symp. on FPGAs, ACM Press, 2001.

[11]. G. Stitt, F. Vahid and S. Nematbakhsh, “Energy Savings and Speed

ups from Partitioning Critical Software Loops to Hardware in

Embedded systems,” ACM Transc. Embedded Comput. Systems, vol.

3, pp. 218-232, 2004.

[12]. R. Tessier and W. Burleson, “Reconfigurable Computing for DSP: A

Survey,” Journal of VLSI Signal Processing, vol. 28, pp. 7-27, 2001,

Kluwer Academic Publisher.

[13]. T. J. Todman, G. A. Constantinides, S. J. E. Wilton, O. Mencer, W.

Luk and P. Y. K. Cheung, “Reconfigurable Computing: Architecture

and Design Methods,” in IEEE Proc. Comput. Digit. Tech., vol. 152,

No. 2, March 2005.

[14]. K. S. Hemmert and K. D. Underwood, “Fast, Efficient Floating-Point

Adders and Multipliers for FPGAs,” ACM Transactions on

Reconfigurable Technology and Systems, vol. 3, No. 3, Article 11,

September 2010.

[15]. G. Quan, J. P. Davis, S. Devarkal and D. A. Buell, “High-Level

Synthesis for Large Bit-Width Multipliers on FPGAs: A Case Study,”

ACM 2005.

[16]. Steve Kilts, “Advanced FPGA Design Architecture, Implementation,

and Optimization,” Wiley 2007.

[17]. Seetharaman Ramachandran “Digital VLSI Systems Design: A

Design Manual for Implementation of Projects on FPGAs and ASICs

using Verilog,” Springer, 2011.

[18]. M. Shand, P. Bertin, and J. Vuillemin, “Hardware Speedups in Long

Integer Multiplication,” Computer Architecture News, vol. 19, No. 1,

pp. 106–114, 1991.

[19]. L. Louca, T. A. Cook, and W. H. Johnson, “Implementation of IEEE

Single Precision Floating Point Addition and Multiplication on

FPGAs,” in ACM/SIGDA International Symposium on Field

Programmable Gate Arrays, Monterey, CA, pp. 107–116, Feb. 1996.

[20]. F. de Dinchin and V. Lef`evre, “Constant Multipliers for FPGAs,” in

Proceedings of the International Conference on Parallel and

Distributed Processing Techniques and Applications, H.R. Arabnia

(Ed.), CSREA Press, vol. I, pp. 167–173, June 2000.

[21]. T. Courtney, R. Turner, and R. Woods, “Multiplexer Based

Reconfiguration for Virtex Multipliers,” in Field-Programmable

Logic and Applications. Proceedings of the 9th International

Workshop, FPL 2000, pp. 749–758, 2000.

[22]. T. Courtney, R. Turner, and R. Woods, “An Investigation of

Reconfigurable Multipliers for use in adaptive Signal Processing,” in

Proceedings of the IEEE Symposium on FPGAs for Custom

Computing Machines (FCCM ’00), IEEE Computer Society Press, pp.

341–343, April 2000.

[23]. A. F. Tenca, M. D. Ercegovac, and M. E. Louie, “Fast On-Line

Multiplication Units Using LSA Organization,” in Proceedings of the

International Society of Optical Engineering (SPIE). Visual

Communications and Image Processing. Real-Time Signal

Processing, vol. 3807, pp. 74–83, 1999.

[24]. C. Wallace, ”A Suggestion for a Fast Multiplier,” IEEE Transactions

on Electronic Computers, 13:14–17, 1964.

[25]. Z. Wang and W. C. Miller, “A new Design Technique for Column

Compression Multipliers,” IEEE Transactions on Computers, vol.

44:962–970, 2005.

[26]. F. Cheng and M. Theobald, ”Design of Synchronous Variable

Latency Pipelined Multipliers.,” IEEE Transaction on Computers, vol.

49: 659-672,2005.

[27]. Z. Huang, “High Level Optimization Techniques for Low Power

Multiplier Design” Ph.D. Thesis, University of California, los angels,

2003.

[28]. C. H. Chang and R. K. Satzoda, “A Low Error and High Performance

Multiplexer-Based Truncated Multiplier,” IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, Vol. 18, No. 12, December

2010.

[29]. S. S. Kidambi, F. E. Guibaly and A. Antoniou, “Area-Efficient

multipliers for Digital Signal Processing Applications,” IEEE

Transactions on Circuits and Systems –II: Analog & Digital Signal

Processing, Vol. 43, No. 2, February 1996.

[30]. J. E. Stine and O. M. Duverne, “Variations on Truncated

Multiplication,” Proceedings of the Euromicro Symposium on Digital

System Design, 2003.

[31]. Y. M. Motey and T. G. Panse, “Hardware Implementation of

Truncated Multiplier Based on Multiplexer Using FPGA,”

International conference on Communication and Signal Processing,

April 3-5, 2013.

[32]. H. Park and E. E. Swartzlander, “Truncated Multiplications for the

Negative Two's Complement Number System,” 49th IEEE

International Midwest Symposium on Circuits and Systems, San Juan,

August 6-9, 2006.

[33]. J. Valls and E. Boemo, “Efficient FPGA Implementation of Two’s

Complement Digit-Serial/Parallel Multipliers,” IEEE Transactions on

Circuits and Systems-II: Analog and Digital Signal Processing, Vol.

50, No. 6, June 2003.

[34]. G. Zhou, L. Li and H. Michalik, “Area optimization of bit parallel

finite field multipliers with fast carry logic on FPGAS,” International

Conference on Field Programmable Logic and Applications, 2008.

[35]. S. Gao, D. A. Khalili and N. Chabini, “Efficient Scheme for

Implementing Large Size Signed Multipliers UsingMultigranular

Embedded DSP Blocks in FPGAs,” International Journal of

Reconfigurable Computing Vol. 2009, Article ID 145130, Hindawi

Publishing Corporation.

[36]. C. Ingemarsson, P. Kallstrom and O. Gustafsson, “Using DSP block

pre-adders in pipeline SDF FFT implementations in contemporary

FPGAs,” 22nd International Conference on Field Programmable Logic

and Applications, August 2012.

[37]. C. R. Baugh and B. Wooley, “A two’s Complement Parallel Array

Multiplication Algorithm,” IEEE Trans. On Computers, vol. C-22,

No. 12. Pp. 1045-1047, Dec. 1973.

[38]. http://www.xilinx.com

[39]. P. K. Meher, S. Chanderasekaran and A. Amira, "FPGA Realization

of FIR Filters by Efficient and Flexible Systolization using

Distributed Arithmetic," IEEE Transactions on Signal Processing, vol.

56, No. 7, July 2008.

AUTHOR PROFILES

B. Khurshid received the B.E. degree in Electronics and Communications

Engineering from the Kashmir University, India, in 2008, the M.Tech

degree in Communications and IT from National Institute of Technology,

Srinagar, India in 2011. Currently he is pursuing his PhD in System design

in the department of Computer Science and Engineering, NIT, Srinagar.

His research interests include Reconfigurable architectures, Platform

oriented solutions for arithmetic and DSP algorithms, Architectural and

technology dependent optimizations targeted for FPGA platforms, etc. He

has many publications in the related field and is a student member of IEEE.

He is also a lifetime member of IETE.

R. N. Mir received B.E. (Hons) in Electrical Engineering from University

of Kashmir (India) in 1985, M.E. in Computer Science & Engineering from

IISc Bangalore (India) in 1990 and Ph D from University of Kashmir,

(India) in 2005. She is currently a Professor in the department of Computer

Science & Engineering at NIT Srinagar, India. She is the co-author of many

scientific publications in international journals and conferences. Her current

research interests include reconfigurable computing, security and routing in

wireless ad-hoc networks and sensor networks

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 4, No. 2 (2015)

40

