
 

 
Abstract — This article presents an encryption system based 

on the PCA (Programmable Cellular Automata) theory and 
the implementation in reconfigurable hardware in order to 
achieve high speed communication for real time applications. 
The proposed encryption algorithm belongs to the class of 
symmetric key and the entire model was implemented on a 
reconfigurable hardware in FPGA (Field-Programmable Gate 
Arrays) device of type Spartan 3E XC3S500E in order to take 
the full advantage of the inherent parallelism of the PCA. 
Based on PCA state transitions certain fundamental 
transformations are defined which represents block ciphering 
functions of the proposed enciphering scheme. The 
experimental results prove that the proposed enciphering 
scheme provides high speed, good security and it is ideally for 
hardware implementation in FPGA devices. 
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I. INTRODUCTION 

Data security for many internet based applications is 
becoming more and more important with the rapid growth 
of the quantity of the information transmitted using network 
communications. 

In present, promising applications for cryptographic 
algorithms may be classified into two categories: processing 
of large amount of data at real time (potentially in a high 
speed network) – examples include telephone conversations, 
telemetry data, video conferencing, streaming audio or 
encoded video transmissions and so forth – and processing 
of very small amount of data at real time (in a moderately 
high-speed network transmitted unpredictably) – examples 
include e-commerce or m-commerce transactions, bank 
account information, e-payments and micro-browser-based 
(WAP-style), HTML page browsing and so forth. In both 
cases, cryptography is the best solution against the 
unauthorized use of the information. 

In the recent years, researchers have remarked the 
similarities between bio-inspired systems – as cellular 
automata (CAs), chaos and cryptography [1], [2]. Several of 
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the CAs features can be correlated with the cryptographic 
properties. A relevant relationship between cellular 
automata and cryptography was revealed by Shannon in his 
fundamental early work [3]. In [3], Shannon discusses about 
a system composed from simple components that interact 
between them – with a transparent local comportment – but 
the global comportment of the entire system unsuspected, 
things that are well known in the cellular automata theory. 

The essence of the theoretical and practical efforts which 
are done in this new field is represented by the idea that 
CAs cryptosystem is capable to have similar performances 
regarding the classic methods based on computational 
techniques.  

Also, technologic evolution in the field of communication 
using reprogrammable hardware structures (FPGA and 
CPLD), gives appropriate solutions for the implementation 
of the cryptographic modules in high speed applications. 
The cryptosystem presented in this paper uses four one-
dimensional PCAs arranged in pipeline and a SRAM 
memory that store the evolution rules used by the PCAs. 
The entire cryptosystem is implemented in hardware on a 
FPGA of type Xilinx Spartan 3E XC3S500E and the 
plaintext/ciphertext is received/transmitted using User 
Datagram Protocol (UDP) connection. 

The paper is organized as follows. The following section 
presents basic theoretical foundations of the proposed work. 
We describe some basics of CA, PCA and reconfigurable 
hardware. Section III shows how the PCA theory was used 
in order to construct a block encryption technique. In this 
section it is presented the structure of the entire PCA based 
encryption system. Section IV contains experimental results 
and the analysis of results. In this section the proposed 
encryption method was tested and verified on a FPGA board 
and using UDP connection protocol. Conclusions and future 
research directions will end the paper.  

II. CONCEPT AND THEORY OF CA, PCA AND 

RECONFIGURABLE HARDWARE 

A. Cellular Automata (CA) 

CAs, introduced by J. v. Neumann [4] and further 
popularized by S. Wolfram [5], are computational models 
that can perform complex computation with only local 
information. The simple structure of CA has attracted 
researchers from different fields of interests and has 
undergone rigorous theoretical and experimental analysis. 

CA represents a particular class of dynamical systems that 
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enable to describe the evolution of complex systems with 
simple rules, without using partial differential equations. A 
CA consists of a regular uniform n-dimensional array of 
cells where every cell can take values either 0 or 1. Each 
cell evolves in each time step (discrete steps) depending on 
some combinational logic on itself and its neighbors as 
shown in Fig. 1. 

 
Fig. 1.  The component of a cellular automata cell. 

 
Such a CA is called three-neighborhood CA. The 

combinational logic is called the rule of the CA. The next 
state function for a three-neighborhood CA cell can be 
expressed as follows: 
Say, 
i – position of an individual cell in an one dimensional 
array, 
t – time step, 
ai(t) – output state of the central cell (i-th cell) at the t-th 
time step. 
Then, 

)](),(),([)1( 11 tatatafta iiii       (1) 

where f denotes the local transition function known as a 
rule of the CA. 

In the CA theory, there are two classic types of 
neighbourhoods: the Moore neighbourhood that comprises 3 
cells for one-dimensional CA and 9 cells for two-
dimensional CA (Fig. 2a); the von Neumann neighbourhood 
with 3 cells for one-dimensional CA and 5 cells for two-
dimensional CA (Fig. 2b). 

 
Fig. 2.  Classical neighborhood (a) – Moore Neighborhood, (b) – von 
Neumann Neighborhood 

 
S. Wolfram has studied the relationships between CA and 
different dynamical systems and suggested a classification 
of CA behavior in this context. According to [5] there are 
four classes of CA: 

Class I – the CA evolution reaches a certain final state 
and stays there (limit points). 

Class II – the CA encounters simple or cyclic structures 
(limit cycles). 

Class III – the majority of initial states lead to arbitrary 
patterns (chaotic behavior of the kind associated with 
strange attractors). 

Class IV – generates global complex structures (very long 
transients with no apparent analog in continuous dynamic 
systems). 
This classification of the CA is done by means of empirical 
observations and simulations (space-time patterns) and 
mainly refers to 1-D CAs, but similar ones can be made for 
2-D or 3-D cases. 

In case of 1-D, three neighborhoods, two states (0 and 1) 
CA, the number of all possible uniform rules is 28. These 
rules are enumerated using Wolfram’s naming convention 
[5] from rule number 0 to rule number 255 and can be 
represented by a 3-variable Boolean function. Among the 
rules, rule 51, rule 60 and rule 102 are used in this paper to 
design the encryption algorithm. The three rules are 
presented in Table I. 

TABLE I 
AN EXAMPLE OF CA NUMBERING RULES 

Rules 
name 

7 
111 

6 
110 

5 
101 

4 
100 

3 
011 

2 
01
0 

1 
001 

0 
000 

51 0 0 1 1 0 0 1 1 

60 0 0 1 1 1 1 0 0 

102 0 1 1 0 0 1 1 0 

 
Each CA rule corresponds to a unique combinational logic. 
For example, using Veitch-Karnaugh diagram, rule 60 
specifies an evolution from the neighborhood configurations 
to the next state as: 

             Rule 60:  )1(tai )()( 1 tata ii  .                 (2) 

That is, the next state of the ith is obtained by XORing the 
present states of the current cell and its left neighbor. In this 
case, XOR yields true if exactly one, but not both, of two 
conditions is true. 

In a CA, different cells may have different evolution 
rules. If all cells have the same CA rule, then this CA is 
called a uniform CA; otherwise it will be called a hybrid 
CA. if all cells rules involve XOR or XNOR only, like rule 
60, then this CA is called additive CA. If in a CA the rules 
only involve XOR operation, then it is called a non-
complemented CA and the corresponding rules are referred 
to as non-complemented rules. If the rules only involve 
XNOR operations, then the CA is called a complemented 
CA. The corresponding rules are called complemented rules. 

B. Programmable Cellular Automata (PCA) 

The programmable cellular automata (PCA) was firstly 
introduced in [6] and are modified CA structures, where the 
combinational logic of each cell is not fixed but controlled 
by a number of control signals such that different functions 
(evolution rules) can be realized on the same structure. As 
the matter of fact, PCA are essentially a modified CA 
structure. We can say that a CA is a PCA if it employs some 
control signals that implement various functions 
dynamically in terms of different rules. 

For example, using such a cell structure as in Fig. 3, all 
possible non-complemented additive rules can be achieved 
through the combinations of the control signals of C1, C2 
and C3 switches. 
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Fig. 3.  An example of a cell of PCA. 

In this paper one dimensional PCA defined over binary 
state alphabet (state 0 or 1) with neighborhood size three 
and dynamically combination of rules 51, 60 and 102 is 
used. 

In conclusion, the very large phenomenology of the CA 
and PCA models, its apparently big complexity and parallel, 
regular, cascadable and local interconnections (however, 
this parallelism, when emulated in software or in sequential 
hardware, disappears) offer a good basis for applications in 
cryptography. 

C. Reconfigurable Hardware 

The reconfigurable devices, firstly introduced by G. Estrin 
in 1960, consist on a hybrid machine composed by a general 
purpose microprocessor interconnected with programmable 
logic devices [7]. 

The most popular reconfigurable hardware devices are 
FPGAs. FPGA circuits represent a compromise between 
circuits with microprocessor and ASIC (Application 
Specific Integrated Circuits) circuits [8]. On one hand, they 
present flexibility in programming, called here 
reconfiguration, which is a feature for microprocessors. 
Even if FPGA cannot be programmable while operation, 
they can be configured anytime is needed, having a structure 
based on RAM programmable machines. On the other hand, 
they allow parallel structures implementation, with response 
time less than a system with microprocessor. 

FPGAs are programmable semiconductor devices 
introduced by Xilinx in the mid 1980s that are based around 
a matrix of configurable logic blocks connected via 
programmable interconnects. A number of tools are 
available for synthesizing logic designs such as Hardware 
Description Languages (HDL) Verilog, and especially, 
VHDL, are the two most widely spread hardware languages. 

Cryptographic realizations in hardware offer high speed 
and bandwidth providing real-time encryption if needed [9], 
[10]. Besides cryptography, applications of FPGAs can be 
found in the domains of evolvable and biologically-inspired 
hardware, network processors, real-time systems, rapid 
ASIC prototyping, digital signal processing, interactive 
multimedia, machine vision, computer graphics, robotics, 
embedded applications, and so forth. In general, FPGAs 
tend to be a good choice when dealing with algorithms that 
can benefit from the high parallelism offered by the FPGA 
fine-grained architecture. 

FPGAs offer advantages for reducing time to design, 
power consumption, flexibility, high-speed and security. 

III. PCA ENCRYPTION ALGORITHM 

The encryption method proposed in this paper is based on 
the PCAs that exhibit periodic behavior (each state lies in 
some cycle). In these cases, their evolution depends 
essentially of the initial state, but we can say that after a 
while the initial state is “forgotten”, in sense that the initial 
state cannot be retrievable through analyses of the current 
configuration. 

The encryption system is composed from four one-
dimensional PCA arranged in pipeline. The block diagram 
of the proposed PCA encryption system is presented in Fig. 
4. 

Plaintext/
Ciphertext

PCA rules generator
FPGA SDRAM Memory

Programmable 
Cellular 

Automata 
(PCA) 1

Control Logic

DATA-IN
Programmable 

Cellular 
Automata 
(PCA) 2

DATA-IN

Programmable 
Cellular 

Automata 
(PCA) 3

DATA-IN

DATA-OUT

Programmable 
Cellular 

Automata 
(PCA) 4

Ciphertext/
Plaintext

DATA-IN

 

Fig. 4.  Block diagram of PCA encryption system. 

In the cipher scheme, one 8-bit message block is 
enciphered by one enciphering function. The PCAs control 
signals are activated with the help of the signals that are 
stored in the FPGA SDRAM memory rules. For the sake of 
simplicity, the enciphering function has four fundamental 
transformations FTs (PCA = 4) to operate on 8-bit data. It is 
obvious that for high security applications, more 
fundamental transformations are to be used. 
The block cipher (decipher) procedure can be defined as 
follows: 

1. Load the PCA1 with one byte plaintext (ciphertext) 
from I/O. The initial block of the message is the initial state 
of the PCA1. The global configuration of the PCA4 
represents the encrypted message. 

2. Load a rule configuration control word from memory 
rules file into the PCA1 … PCA4. 

3. Run the PCA (1, 2, 3 and 4) for 1 … 7 cycles (in the 
next paragraph I will explain why must have 1…7 cycles). 

4. Repeat steps 2 and 3 for four times. 
5. Send one byte ciphertext (plaintext) to I/O (from the 

PCA4). If not end of the plaintext (ciphertext) go to step 1. 
Otherwise, stop the process. 

In the block cipher algorithm four 8-cell PCAs are 
cascaded to form a pipeline CA. With the pipeline, four CA 
fundamental transformations (FTs) can be performed 
simultaneously. That means one enciphering function can be 
done in a single pipeline. 

The PCA use for evolution a combination of rules 51, 60 
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and 102. The rules specify the evolution of the CA from 
neighborhood configuration to the next state and these are 
presented, as numerical values, in Table I.  

The corresponding combinational logic of rules 51, 60, 
102 for PCA can be expressed as follows: 

                 Rule 51: )()1( tata ii  .                              (3) 

                 Rule 60:  )1(tai )()( 1 tata ii  .             (4) 

                 Rule 102: )()()1( 1 tatata iii  .           (5) 

The PCA configured with the rules 51, 60 and 102 has a 
state-transition diagram that consists of equal circles of even 
length. As an example, 8-cell PCA with rule configuration 
<51, 51, 60, 60, 60, 60, 51 and 51> generates cycles as 
depicted in Fig. 5. 

 

Fig. 5.  The state transitions diagram of a non-maximum-length PCA. 

Any PCA transformation takes two input parameters. The 
first one is the seed of the PCA and the second one is the 
number of clock cycles that needs to be run. We have found 
that for a PCA with a combination of rules 51, 60 and 102 
the initial seed of the PCA reappear after an even number of 
evolution cycles (see Fig. 5).  

In Fig. 5, the PCA has two equal length cycles and each 
cycle has a cycle length 8. Considering this PCA as an 
enciphering function and defining a plaintext as its original 
state it goes to its intermediate state after four cycles which 
is enciphering process. After running another four cycles, 
the intermediate state returns back to its original state which 
deciphers ciphertext into plaintext ensuring deciphering 
process. 

Table II shows the number of 8-cell CA configurations, 
each generates cycles of length 2, 4, 8 or 16. 

TABLE II 
CA HAVING EVEN CYCLES LENGTH 

Rules applied to cells 

8-cell 
CA 

having  
2 

length 
cycles 

8-cell 
CA 

having  
4 

length 
cycles 

8-cell 
CA 

having 
8 

length 
cycles 

8-cell 
CA 

having 
16 

length 
cycles 

51, 60 (or 102) 7 327 156 2 

 
In this encryption algorithm are used only the 

configurations of the rules that generates cycles of length 8. 
So the system designer is free to take any number in the 156 
combinations (see Table II) to enhance the security of the 
system. The rules with 8-cycle length are presented in detail 
in my previous papers [11] and [12].  

The proposed PCA encryption method has many 
differences in main concepts in comparing with previous 
proposed methods [11], [12]. One of the main differences is 
the nature of method. In the proposed encryption algorithm, 
we have four PCA’s arranged in pipeline in order to achieve 
good security, but in [11] and [12] we have only one PCA. 
Also, the communication interface was serial RS232 and 
here we use TCP/IP connection (UDP protocol) in order to 

achieve high speed and encrypt/decrypt data sent over the 
Internet. 

Because of the fact that the PCA does not generate 
sequences of maximum-length for all the possible 
combinations (512) of the rules we must apply from the 
FPGA RAM memory only the combinations (156) that 
generate cycles of length 8.  

As is presented in my previous paper [13] and according 
with the CA theory, a single basic PCA cell was designed 
(as is depicted in Fig. 6). 

 
Fig. 6.  The structure of the PCA cell. 

The cell consists of a D flip-flop and a logic 
combinational circuit (LCC). The LCC includes 
multiplexers and XNOR logic gates to implement the rules 
of CA and to control the loading of data and operation of 
the CA. When the load control signal (LoadData) is “logic 
1”, data is loaded into D flip-flop. When LoadData is “logic 
0”, data is run into the cell according to the rules applied to 
the rule control signals (S1, S0) and the states of 
neighborhoods. After an established number of cycles (1 to 
7), the data on the Q output of the flip-flop is sent out and 
new data is loaded in. 

In this research are connected together eight cells in order 
to build an 8-cell PCA as is presented in Fig. 7. 

 
Fig. 7.  PCA structure. 

We note that the PCAs evolution rules must be 
downloaded into the FPGA RAM memory before start the 
encryption/decryption process. When the encryption process 
begins, rules are read out in sequence and applied to the 
four pipelined PCAs.  

IV. TESTING, RESULTS AND SECURITY ANALYSIS 

The general structure of the system is presented in Fig. 8. 

 
Fig. 8.  General system architecture. 
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The hardware project implements the four pipelined PCA, 
the memory for storing the evolution rules and the UDP 
protocol (Fig. 9). 

 
Fig. 9.  Hardware design. 

The PCA encryption system was implemented in 
hardware in a Spartan 3E XC3S500E FPGA board from 
Xilinx [14] (Fig. 10). 

 
Fig. 10.  Spartan 3E XC3S500E FPGA. 

In hardware, the PCA cryptosystem was developed using 
VHDL, which is a standard language for hardware 
description. Using VHDL we tested the application modules 
in order to verify that the results obtained through software 
programming (using C# language) agree with hardware 
simulation. Because a lot of simulation and research has 
been carried out using 8-bit PCAs in this research, an 8-bit 
four PCAs was chosen for our design.  

The FPGA board is interfaced with a host computer using 
RJ-45 connector and using UDP protocol (sees Fig. 11). 

 
Fig. 11.  The application of the encryption system. 

The UDP allows high speed data transfer from the PC to 
the cryptosystem. The message split into 1KB packages is 
sent to the FPGA board using the UDP client – server 
connection (Fig. 12) 

UDP PROTOCOL

RECEIVER FIFO

1KB MEMORY

TRANSMITTER

PCA 
ENCRYPTION/DECRYPTION

 

Fig. 12.  UDP protocol. 

As the bytes reach destination they are immediately 
encrypted using the correspondent bytes of the PCA’s state 
and then saved into the 1KB RAM memory of the board. In 
the FPGA, the message received is treated character by 
character as we explained above and the 
encryption/decryption dates are sent by the FPGA to the PC 
to be displayed and stored. In hardware, the encryption rules 
are downloaded to the RAM before encryption. When the 
encryption process begins, rules are read out in sequence 
and sent to the PCA. The process of read of the RAM rules 
does not introduce delays in the process of encryption 
because are read in parallel with the encryption of a block of 
message. 
An illustrative example for the encryption-decryption 
process applied to a short text file is presented in Fig. 13. 

 
Fig. 13.  Spartan 3E XC3S500E FPGA. 

It is relevant to note that the distribution of the encrypted 
text is uniform in all ASCII intervals and not only in zone of 
alphanumeric intervals (as is depicted in Fig. 14 and Fig. 
15).  

 

Fig. 14.  Plaintext distribution. 

 

Fig. 15.  Ciphertext distribution. 

On x-axis we have the number of characters that compose 
the message (plaintext in Fig. 14 and ciphertext in Fig. 15), 
and on y-axis we represent the distribution of the 
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plaintext/ciphertext. 
The PCA encrypted sequences was tested using a set of 16 
statistical tests conceived by the National Institute of 
Standards and technology (NIST) [15]. The NIST test 
generates probabilistic results with respect to some 
characteristics that describe the pseudo-random number 
generators. The encrypted sequences pass the NIST tests 
and the system is accepted as possible random. 

The timing analyzer was used to determine the maximum 
operating frequency (approximately 5Mbps at 50MHz 
FPGA – XC3S500E). To improve this value further 
application can use larger RAM memories in order to store 
more encrypted UDP packages into the FPGA before 
starting back to PC transmission phase. 

V. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

The paper presents a symmetric key block encryption 
algorithm based on PCA theory. The main contribution is 
the design, the implementation and the analysis of the 
pipelined PCA encryption algorithm in reconfigurable 
hardware using UDP communication protocol.  

As PCA achieves high parallelism and only local 
interconnections we simplify the implementation and with 
low cost. Also, the encryption and decryption devices share 
the same module, and could be implemented efficiently in 
hardware due to simple structure of PCA. 

A prototypal hardware realization of this module was 
realized and described, and the modules presented are 
programmed by means of a VHDL language.  

Future works include larger storage memories (for higher 
speed), more flexible parameters for system initialization 
and the implementation in FPGA of both UDP and TCP/IP 
protocol (for increased transmission safety).  
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