

Abstract — This article presents an encryption system based

on the PCA (Programmable Cellular Automata) theory and
the implementation in reconfigurable hardware in order to
achieve high speed communication for real time applications.
The proposed encryption algorithm belongs to the class of
symmetric key and the entire model was implemented on a
reconfigurable hardware in FPGA (Field-Programmable Gate
Arrays) device of type Spartan 3E XC3S500E in order to take
the full advantage of the inherent parallelism of the PCA.
Based on PCA state transitions certain fundamental
transformations are defined which represents block ciphering
functions of the proposed enciphering scheme. The
experimental results prove that the proposed enciphering
scheme provides high speed, good security and it is ideally for
hardware implementation in FPGA devices.

Keywords—Block ciphers, Cellular automata,
Cryptography, Programmable cellular automata,
Reconfigurable hardware.

I. INTRODUCTION

Data security for many internet based applications is
becoming more and more important with the rapid growth
of the quantity of the information transmitted using network
communications.

In present, promising applications for cryptographic
algorithms may be classified into two categories: processing
of large amount of data at real time (potentially in a high
speed network) – examples include telephone conversations,
telemetry data, video conferencing, streaming audio or
encoded video transmissions and so forth – and processing
of very small amount of data at real time (in a moderately
high-speed network transmitted unpredictably) – examples
include e-commerce or m-commerce transactions, bank
account information, e-payments and micro-browser-based
(WAP-style), HTML page browsing and so forth. In both
cases, cryptography is the best solution against the
unauthorized use of the information.

In the recent years, researchers have remarked the
similarities between bio-inspired systems – as cellular
automata (CAs), chaos and cryptography [1], [2]. Several of

Manuscript received October 25, 2012, revised March 08, 2013. This

work was supported by CNCSIS UEFISCSU, project number PN II-RU PD
369/2010, contract number 10/02.08.2010.

Petre Anghelescu – University of Pitesti, Department of Electronics,
Communications and Computers. Str. Targu din Vale, No. 1, 110040,
Pitesti, Arges, Romania. Corresponding author phone: +4 0724193051 and
e-mail: petre.anghelescu@upit.ro.

the CAs features can be correlated with the cryptographic
properties. A relevant relationship between cellular
automata and cryptography was revealed by Shannon in his
fundamental early work [3]. In [3], Shannon discusses about
a system composed from simple components that interact
between them – with a transparent local comportment – but
the global comportment of the entire system unsuspected,
things that are well known in the cellular automata theory.

The essence of the theoretical and practical efforts which
are done in this new field is represented by the idea that
CAs cryptosystem is capable to have similar performances
regarding the classic methods based on computational
techniques.

Also, technologic evolution in the field of communication
using reprogrammable hardware structures (FPGA and
CPLD), gives appropriate solutions for the implementation
of the cryptographic modules in high speed applications.
The cryptosystem presented in this paper uses four one-
dimensional PCAs arranged in pipeline and a SRAM
memory that store the evolution rules used by the PCAs.
The entire cryptosystem is implemented in hardware on a
FPGA of type Xilinx Spartan 3E XC3S500E and the
plaintext/ciphertext is received/transmitted using User
Datagram Protocol (UDP) connection.

The paper is organized as follows. The following section
presents basic theoretical foundations of the proposed work.
We describe some basics of CA, PCA and reconfigurable
hardware. Section III shows how the PCA theory was used
in order to construct a block encryption technique. In this
section it is presented the structure of the entire PCA based
encryption system. Section IV contains experimental results
and the analysis of results. In this section the proposed
encryption method was tested and verified on a FPGA board
and using UDP connection protocol. Conclusions and future
research directions will end the paper.

II. CONCEPT AND THEORY OF CA, PCA AND

RECONFIGURABLE HARDWARE

A. Cellular Automata (CA)

CAs, introduced by J. v. Neumann [4] and further
popularized by S. Wolfram [5], are computational models
that can perform complex computation with only local
information. The simple structure of CA has attracted
researchers from different fields of interests and has
undergone rigorous theoretical and experimental analysis.

CA represents a particular class of dynamical systems that

Programmable Cellular Automata Encryption
Algorithm Implemented in Reconfigurable

Hardware

Petre Anghelescu

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 2, No. 2 (2013)

73doi: 10.11601/ijates.v2i2.12

enable to describe the evolution of complex systems with
simple rules, without using partial differential equations. A
CA consists of a regular uniform n-dimensional array of
cells where every cell can take values either 0 or 1. Each
cell evolves in each time step (discrete steps) depending on
some combinational logic on itself and its neighbors as
shown in Fig. 1.

Fig. 1. The component of a cellular automata cell.

Such a CA is called three-neighborhood CA. The

combinational logic is called the rule of the CA. The next
state function for a three-neighborhood CA cell can be
expressed as follows:
Say,
i – position of an individual cell in an one dimensional
array,
t – time step,
ai(t) – output state of the central cell (i-th cell) at the t-th
time step.
Then,

)](),(),([)1(11 tatatafta iiii (1)

where f denotes the local transition function known as a
rule of the CA.

In the CA theory, there are two classic types of
neighbourhoods: the Moore neighbourhood that comprises 3
cells for one-dimensional CA and 9 cells for two-
dimensional CA (Fig. 2a); the von Neumann neighbourhood
with 3 cells for one-dimensional CA and 5 cells for two-
dimensional CA (Fig. 2b).

Fig. 2. Classical neighborhood (a) – Moore Neighborhood, (b) – von
Neumann Neighborhood

S. Wolfram has studied the relationships between CA and
different dynamical systems and suggested a classification
of CA behavior in this context. According to [5] there are
four classes of CA:

Class I – the CA evolution reaches a certain final state
and stays there (limit points).

Class II – the CA encounters simple or cyclic structures
(limit cycles).

Class III – the majority of initial states lead to arbitrary
patterns (chaotic behavior of the kind associated with
strange attractors).

Class IV – generates global complex structures (very long
transients with no apparent analog in continuous dynamic
systems).
This classification of the CA is done by means of empirical
observations and simulations (space-time patterns) and
mainly refers to 1-D CAs, but similar ones can be made for
2-D or 3-D cases.

In case of 1-D, three neighborhoods, two states (0 and 1)
CA, the number of all possible uniform rules is 28. These
rules are enumerated using Wolfram’s naming convention
[5] from rule number 0 to rule number 255 and can be
represented by a 3-variable Boolean function. Among the
rules, rule 51, rule 60 and rule 102 are used in this paper to
design the encryption algorithm. The three rules are
presented in Table I.

TABLE I
AN EXAMPLE OF CA NUMBERING RULES

Rules
name

7
111

6
110

5
101

4
100

3
011

2
01
0

1
001

0
000

51 0 0 1 1 0 0 1 1

60 0 0 1 1 1 1 0 0

102 0 1 1 0 0 1 1 0

Each CA rule corresponds to a unique combinational logic.
For example, using Veitch-Karnaugh diagram, rule 60
specifies an evolution from the neighborhood configurations
to the next state as:

 Rule 60:)1(tai)()(1 tata ii . (2)

That is, the next state of the ith is obtained by XORing the
present states of the current cell and its left neighbor. In this
case, XOR yields true if exactly one, but not both, of two
conditions is true.

In a CA, different cells may have different evolution
rules. If all cells have the same CA rule, then this CA is
called a uniform CA; otherwise it will be called a hybrid
CA. if all cells rules involve XOR or XNOR only, like rule
60, then this CA is called additive CA. If in a CA the rules
only involve XOR operation, then it is called a non-
complemented CA and the corresponding rules are referred
to as non-complemented rules. If the rules only involve
XNOR operations, then the CA is called a complemented
CA. The corresponding rules are called complemented rules.

B. Programmable Cellular Automata (PCA)

The programmable cellular automata (PCA) was firstly
introduced in [6] and are modified CA structures, where the
combinational logic of each cell is not fixed but controlled
by a number of control signals such that different functions
(evolution rules) can be realized on the same structure. As
the matter of fact, PCA are essentially a modified CA
structure. We can say that a CA is a PCA if it employs some
control signals that implement various functions
dynamically in terms of different rules.

For example, using such a cell structure as in Fig. 3, all
possible non-complemented additive rules can be achieved
through the combinations of the control signals of C1, C2
and C3 switches.

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 2, No. 2 (2013)

74

Fig. 3. An example of a cell of PCA.

In this paper one dimensional PCA defined over binary
state alphabet (state 0 or 1) with neighborhood size three
and dynamically combination of rules 51, 60 and 102 is
used.

In conclusion, the very large phenomenology of the CA
and PCA models, its apparently big complexity and parallel,
regular, cascadable and local interconnections (however,
this parallelism, when emulated in software or in sequential
hardware, disappears) offer a good basis for applications in
cryptography.

C. Reconfigurable Hardware

The reconfigurable devices, firstly introduced by G. Estrin
in 1960, consist on a hybrid machine composed by a general
purpose microprocessor interconnected with programmable
logic devices [7].

The most popular reconfigurable hardware devices are
FPGAs. FPGA circuits represent a compromise between
circuits with microprocessor and ASIC (Application
Specific Integrated Circuits) circuits [8]. On one hand, they
present flexibility in programming, called here
reconfiguration, which is a feature for microprocessors.
Even if FPGA cannot be programmable while operation,
they can be configured anytime is needed, having a structure
based on RAM programmable machines. On the other hand,
they allow parallel structures implementation, with response
time less than a system with microprocessor.

FPGAs are programmable semiconductor devices
introduced by Xilinx in the mid 1980s that are based around
a matrix of configurable logic blocks connected via
programmable interconnects. A number of tools are
available for synthesizing logic designs such as Hardware
Description Languages (HDL) Verilog, and especially,
VHDL, are the two most widely spread hardware languages.

Cryptographic realizations in hardware offer high speed
and bandwidth providing real-time encryption if needed [9],
[10]. Besides cryptography, applications of FPGAs can be
found in the domains of evolvable and biologically-inspired
hardware, network processors, real-time systems, rapid
ASIC prototyping, digital signal processing, interactive
multimedia, machine vision, computer graphics, robotics,
embedded applications, and so forth. In general, FPGAs
tend to be a good choice when dealing with algorithms that
can benefit from the high parallelism offered by the FPGA
fine-grained architecture.

FPGAs offer advantages for reducing time to design,
power consumption, flexibility, high-speed and security.

III. PCA ENCRYPTION ALGORITHM

The encryption method proposed in this paper is based on
the PCAs that exhibit periodic behavior (each state lies in
some cycle). In these cases, their evolution depends
essentially of the initial state, but we can say that after a
while the initial state is “forgotten”, in sense that the initial
state cannot be retrievable through analyses of the current
configuration.

The encryption system is composed from four one-
dimensional PCA arranged in pipeline. The block diagram
of the proposed PCA encryption system is presented in Fig.
4.

Plaintext/
Ciphertext

PCA rules generator
FPGA SDRAM Memory

Programmable
Cellular

Automata
(PCA) 1

Control Logic

DATA-IN
Programmable

Cellular
Automata
(PCA) 2

DATA-IN

Programmable
Cellular

Automata
(PCA) 3

DATA-IN

DATA-OUT

Programmable
Cellular

Automata
(PCA) 4

Ciphertext/
Plaintext

DATA-IN

Fig. 4. Block diagram of PCA encryption system.

In the cipher scheme, one 8-bit message block is
enciphered by one enciphering function. The PCAs control
signals are activated with the help of the signals that are
stored in the FPGA SDRAM memory rules. For the sake of
simplicity, the enciphering function has four fundamental
transformations FTs (PCA = 4) to operate on 8-bit data. It is
obvious that for high security applications, more
fundamental transformations are to be used.
The block cipher (decipher) procedure can be defined as
follows:

1. Load the PCA1 with one byte plaintext (ciphertext)
from I/O. The initial block of the message is the initial state
of the PCA1. The global configuration of the PCA4
represents the encrypted message.

2. Load a rule configuration control word from memory
rules file into the PCA1 … PCA4.

3. Run the PCA (1, 2, 3 and 4) for 1 … 7 cycles (in the
next paragraph I will explain why must have 1…7 cycles).

4. Repeat steps 2 and 3 for four times.
5. Send one byte ciphertext (plaintext) to I/O (from the

PCA4). If not end of the plaintext (ciphertext) go to step 1.
Otherwise, stop the process.

In the block cipher algorithm four 8-cell PCAs are
cascaded to form a pipeline CA. With the pipeline, four CA
fundamental transformations (FTs) can be performed
simultaneously. That means one enciphering function can be
done in a single pipeline.

The PCA use for evolution a combination of rules 51, 60

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 2, No. 2 (2013)

75

and 102. The rules specify the evolution of the CA from
neighborhood configuration to the next state and these are
presented, as numerical values, in Table I.

The corresponding combinational logic of rules 51, 60,
102 for PCA can be expressed as follows:

 Rule 51:)()1(tata ii . (3)

 Rule 60:)1(tai)()(1 tata ii . (4)

 Rule 102:)()()1(1 tatata iii . (5)

The PCA configured with the rules 51, 60 and 102 has a
state-transition diagram that consists of equal circles of even
length. As an example, 8-cell PCA with rule configuration
<51, 51, 60, 60, 60, 60, 51 and 51> generates cycles as
depicted in Fig. 5.

Fig. 5. The state transitions diagram of a non-maximum-length PCA.

Any PCA transformation takes two input parameters. The
first one is the seed of the PCA and the second one is the
number of clock cycles that needs to be run. We have found
that for a PCA with a combination of rules 51, 60 and 102
the initial seed of the PCA reappear after an even number of
evolution cycles (see Fig. 5).

In Fig. 5, the PCA has two equal length cycles and each
cycle has a cycle length 8. Considering this PCA as an
enciphering function and defining a plaintext as its original
state it goes to its intermediate state after four cycles which
is enciphering process. After running another four cycles,
the intermediate state returns back to its original state which
deciphers ciphertext into plaintext ensuring deciphering
process.

Table II shows the number of 8-cell CA configurations,
each generates cycles of length 2, 4, 8 or 16.

TABLE II
CA HAVING EVEN CYCLES LENGTH

Rules applied to cells

8-cell
CA

having
2

length
cycles

8-cell
CA

having
4

length
cycles

8-cell
CA

having
8

length
cycles

8-cell
CA

having
16

length
cycles

51, 60 (or 102) 7 327 156 2

In this encryption algorithm are used only the

configurations of the rules that generates cycles of length 8.
So the system designer is free to take any number in the 156
combinations (see Table II) to enhance the security of the
system. The rules with 8-cycle length are presented in detail
in my previous papers [11] and [12].

The proposed PCA encryption method has many
differences in main concepts in comparing with previous
proposed methods [11], [12]. One of the main differences is
the nature of method. In the proposed encryption algorithm,
we have four PCA’s arranged in pipeline in order to achieve
good security, but in [11] and [12] we have only one PCA.
Also, the communication interface was serial RS232 and
here we use TCP/IP connection (UDP protocol) in order to

achieve high speed and encrypt/decrypt data sent over the
Internet.

Because of the fact that the PCA does not generate
sequences of maximum-length for all the possible
combinations (512) of the rules we must apply from the
FPGA RAM memory only the combinations (156) that
generate cycles of length 8.

As is presented in my previous paper [13] and according
with the CA theory, a single basic PCA cell was designed
(as is depicted in Fig. 6).

Fig. 6. The structure of the PCA cell.

The cell consists of a D flip-flop and a logic
combinational circuit (LCC). The LCC includes
multiplexers and XNOR logic gates to implement the rules
of CA and to control the loading of data and operation of
the CA. When the load control signal (LoadData) is “logic
1”, data is loaded into D flip-flop. When LoadData is “logic
0”, data is run into the cell according to the rules applied to
the rule control signals (S1, S0) and the states of
neighborhoods. After an established number of cycles (1 to
7), the data on the Q output of the flip-flop is sent out and
new data is loaded in.

In this research are connected together eight cells in order
to build an 8-cell PCA as is presented in Fig. 7.

Fig. 7. PCA structure.

We note that the PCAs evolution rules must be
downloaded into the FPGA RAM memory before start the
encryption/decryption process. When the encryption process
begins, rules are read out in sequence and applied to the
four pipelined PCAs.

IV. TESTING, RESULTS AND SECURITY ANALYSIS

The general structure of the system is presented in Fig. 8.

Fig. 8. General system architecture.

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 2, No. 2 (2013)

76

The hardware project implements the four pipelined PCA,
the memory for storing the evolution rules and the UDP
protocol (Fig. 9).

Fig. 9. Hardware design.

The PCA encryption system was implemented in
hardware in a Spartan 3E XC3S500E FPGA board from
Xilinx [14] (Fig. 10).

Fig. 10. Spartan 3E XC3S500E FPGA.

In hardware, the PCA cryptosystem was developed using
VHDL, which is a standard language for hardware
description. Using VHDL we tested the application modules
in order to verify that the results obtained through software
programming (using C# language) agree with hardware
simulation. Because a lot of simulation and research has
been carried out using 8-bit PCAs in this research, an 8-bit
four PCAs was chosen for our design.

The FPGA board is interfaced with a host computer using
RJ-45 connector and using UDP protocol (sees Fig. 11).

Fig. 11. The application of the encryption system.

The UDP allows high speed data transfer from the PC to
the cryptosystem. The message split into 1KB packages is
sent to the FPGA board using the UDP client – server
connection (Fig. 12)

UDP PROTOCOL

RECEIVER FIFO

1KB MEMORY

TRANSMITTER

PCA
ENCRYPTION/DECRYPTION

Fig. 12. UDP protocol.

As the bytes reach destination they are immediately
encrypted using the correspondent bytes of the PCA’s state
and then saved into the 1KB RAM memory of the board. In
the FPGA, the message received is treated character by
character as we explained above and the
encryption/decryption dates are sent by the FPGA to the PC
to be displayed and stored. In hardware, the encryption rules
are downloaded to the RAM before encryption. When the
encryption process begins, rules are read out in sequence
and sent to the PCA. The process of read of the RAM rules
does not introduce delays in the process of encryption
because are read in parallel with the encryption of a block of
message.
An illustrative example for the encryption-decryption
process applied to a short text file is presented in Fig. 13.

Fig. 13. Spartan 3E XC3S500E FPGA.

It is relevant to note that the distribution of the encrypted
text is uniform in all ASCII intervals and not only in zone of
alphanumeric intervals (as is depicted in Fig. 14 and Fig.
15).

Fig. 14. Plaintext distribution.

Fig. 15. Ciphertext distribution.

On x-axis we have the number of characters that compose
the message (plaintext in Fig. 14 and ciphertext in Fig. 15),
and on y-axis we represent the distribution of the

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 2, No. 2 (2013)

77

plaintext/ciphertext.
The PCA encrypted sequences was tested using a set of 16
statistical tests conceived by the National Institute of
Standards and technology (NIST) [15]. The NIST test
generates probabilistic results with respect to some
characteristics that describe the pseudo-random number
generators. The encrypted sequences pass the NIST tests
and the system is accepted as possible random.

The timing analyzer was used to determine the maximum
operating frequency (approximately 5Mbps at 50MHz
FPGA – XC3S500E). To improve this value further
application can use larger RAM memories in order to store
more encrypted UDP packages into the FPGA before
starting back to PC transmission phase.

V. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

The paper presents a symmetric key block encryption
algorithm based on PCA theory. The main contribution is
the design, the implementation and the analysis of the
pipelined PCA encryption algorithm in reconfigurable
hardware using UDP communication protocol.

As PCA achieves high parallelism and only local
interconnections we simplify the implementation and with
low cost. Also, the encryption and decryption devices share
the same module, and could be implemented efficiently in
hardware due to simple structure of PCA.

A prototypal hardware realization of this module was
realized and described, and the modules presented are
programmed by means of a VHDL language.

Future works include larger storage memories (for higher
speed), more flexible parameters for system initialization
and the implementation in FPGA of both UDP and TCP/IP
protocol (for increased transmission safety).

REFERENCES
[1] A. Fuster-Sabater, P. Cabalerro-Gil, “Chaotic Cellular Automata with

Cryptographic Application”, 9th International Conference on Cellular
Automata for Research and Industry, Springer-Verlag Berlin
Heidelberg, LNCS 6350, pp. 251–260, 2010.

[2] C. S. Rao, S. R. Attada, M. J. Rao, K. N. Rao, “Implementation of
object oriented encryption system using layered cellular automata”,
International Journal of Engineering Science and Technology
(IJEST), ISSN : 0975-5462, Vol. 3, No. 7, July 2011, Available:
http://www.ijest.info/docs/IJEST11-03-07-163.pdf.

[3] C. Shannon, “Communication Theory of Secrecy Systems”, Bell Sys.
Tech. J. 28, pag. 656–715, 1949, Available:
netlab.cs.ucla.edu/wiki/files/shannon1949.pdf.

[4] J. von Neumann, Theory of self -reproducing automata, edited and
completed by Burks, A.W. (Ed.), Univ. of Illinois Press, London,
1966.

[5] S. Wolfram, A new kind of science, Wolfram Media Inc., ISBN: 1-
57955-008-8, 2002.

[6] S. Nandi, B. K. Kar, P. P. Chaudhuri, “Theory and applications of
cellular automata in cryptography”, IEEE Transactions on Computers,
43(12), 1994, pp. 1346-1356.

[7] A. Menezes, P. Oorschot, and S. Vanstone. Handbook of applied
cryptography, CRC Press, ISBN: 0-8493-8523-7, 1996.

[8] T. Fogarty, J. Miller, and P. Thompson, “Evolving digital logic
circuits on Xilinx 6000 family FPGAs,” in Soft Computing in
Engineering Design and Manufacturing, P.Chawdhry, R. Roy, and R.
Pant (eds.), Springer: Berlin, pp. 299–305, 1998.

[9] E. Jamro, P. Russek, A. Dabrowska-Boruch, M. Wielgosz, “The
implementation of the customized, parallel architecture for a fast
word-match program”, International Journal of Computer Systems
Science and Engineering, Volume 26, Issue 4, pp. 285-292, 2011.

[10] F. Rodriguez-Henriquez, N. A. Saqib, A. Diaz-Perez, C.K. Koc.
Cryptographic algorithms on reconfigurable hardware, Springer –
Verlag ,ISBN 978-0-387-33883-5, 2007.

[11] P. Anghelescu, S. Ionita, E. Sofron, “Encryption technique with
programmable cellular automata (ETPCA)”, Journal of Cellular
Automata, ISSN 1557-5969, Volume 5, Issue 1-2: 79-106, 2010.

[12] P. Anghelescu, S. Ionita, E. Sofron, “FPGA implementation of hybrid
additive programmable cellular automata encryption algorithm”, The
8th International Conference on Hybrid Intelligent Systems, HIS 2008,
pp. 96-101, 2008.

[13] P. Anghelescu, “Security of Telemedical Applications over the
Internet using Programmable Cellular Automata”, International
Journal of Intelligent Computing Research, IJICR, Volume 3, Issue
1/2, ISSN: 2042–4655, pp. 245-251, 2012.

[14] Spartan 3E Starter kit board data sheet downloaded from
http://www.xilinx.com/support/documentation/boards_and_kits/ug23
0.pdf.

[15] A. Rukhin, J. Soto, J. Nechvatal1, M. Smid, E. Barker, S. Leigh, M.
Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, S. Vo, “A
Statistical Test Suite for Random and Pseu-doRandom Number
Generators for Cryptographic Applications”, NIST (National Institute
of Standards and Technology) Special Publication 800-22,
(2005&2010), http://csrc.nist.gov/rng/.

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 2, No. 2 (2013)

78

