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Abstract—In our earlier research papers, bash shell scripts 

using the host Linux command were applied for testing the 

performance and stability of different DNS64 server imple-

mentations. Because of their inefficiency, a small multi-

threaded C/C++ program (named dns64perf) was written 

which can directly send DNS AAAA record queries. After the 

introduction to the essential theoretical background about the 

structure of DNS messages and TCP/IP socket interface 

programming, the design decisions and implementation details 

of our DNS64 performance test program are disclosed. The 

efficiency of dns64perf is compared to that of the old method 

using bash shell scripts. The result is convincing: dns64perf can 

send at least 95 times more DNS AAAA record queries per 

second. The source code of dns64perf is published under the 

GNU GPLv3 license to support the work of other researchers in 

the field of testing the performance of DNS64 servers.  

 
Keywords—DNS64, DNS query, Linux, performance 

analysis, TCP/IP socket interface programming. 

 

I. INTRODUCTION 

The combination of DNS64 [1] and NAT64 [2] is the best 

available solution which can enable IPv6 only clients to 

communicate with IPv4 only servers. There are several 

DNS64 and NAT64 implementations exist and the network 

operators need to choose the one that best fits for their 

purposes. Performance, stability and security are all very 

important aspects.  

Several papers were published concerning the performance 

of DNS64 and NAT64 implementations, e.g. [3]-[5], 

however their authors measured the common performance of 

the combination of a given DNS64 implementation and a 

given NAT64 implementation. We have shown in [6] that 

the performance of the NAT64 and DNS64 implementations 

should be measured independently. 

In our previous works [6]-[8], we measured the performance 

of several DNS64 implementations using single core and 

also multi-core test devices. We used simple bash shell 

scripts for load generation (see details in section II), but they 

proved to be inefficient and therefore we decided to prepare 

a small special purpose C/C++ test program. We do not 

know of any other similar test program for the performance 

analysis of DNS64 servers, except for the general DNS 

server performance test program called DNSPerf [9] which 

could be used, however it uses a text file as input [10] and 

thus the reading and processing of the text file may be a 
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bottleneck. (The uncompressed size of its sample query 

input file [11] is 248,609,309 bytes.) As for the hardware 

platform of the load generator for our further DNS64 

performance measurements, we plan to use a cluster of SBCs 

(Single Board Computer), similar to the one documented in 

[12] but with more powerful SBCs. (We have already 

benchmarked some of them [13] and we are currently 

designing a 16 element cluster.) The SBCs use micro SD 

cards as storage and they produce poor transfer rate (e.g. 10-

20MB/s), thus the reading of hundreds of megabytes size 

files from a micro SD card may be a serious bottleneck. 

Therefore we considered that a small special purpose 

DNS64 performance test program was worth writing. In this 

paper, we discuss the design, implementation and testing of 

our DNS64 performance test program. 

The remainder of this paper is organized as follows. The 

DNS64 server performance testing algorithm to be 

implemented by the test program is discussed in section II. 

The theoretical background including the structure of the 

DNS messages and the basics of TCP/IP socket interface 

programming is summarized in section III. The design and 

implementation questions are detailed in section IV. The 

method of the comparison of the performances of the old 

bash scripts and of the new test program is disclosed and the 

results are presented and discussed in section V. Our plans 

for future research are outlined in section VI. 

II. ALGORITHM FOR THE TEST PROGRAM 

We were satisfied with the testing method used in [6]-[8] 

therefore our goal was to design and implement a test 

program which performs very similar tests but at least one 

order of magnitude faster. 

The original testing method was designed to eliminate the 

effect of caching therefore it requested name resolution for 

different domain names. Originally, we used the namespace 

of 10-{0..10}-{0..255}-{0..255}.zonat.tilb.sze.hu which was 

mapped to the 10.0.0.0 – 10.10.255.255 IPv4 address only 

and to no IPv6 address. (It was the task of the DNS64 server 

to synthesize the so called IPv4 Embedded IPv6 Addresses 

[14] for these domain names.) 

In order to make a well tunable load generator, we used 1-8 

computers, which executed the same bash scripts. The 

synchronized start of the client scripts was done by using the 

“Send Input to All Sessions” function of the terminal 

program of KDE (called Konsole) in [6] and [7] and it was 

done by using multicast in [8]. 

To ensure non-overlapping namespace for each client 

computers, the number of the computers were included into 

the domain name generation: it was used as the number right 
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after the beginning “10-” string. The two other numbers 

from 0 to 255 made it possible for each clients to generate 

65536 different domain names. They were grouped into 256 

experiments (256 requests were sent in each of them) and 

the time of each experiments were measured. Two bash 

scripts were used. The first one was: 
 
#!/bin/bash 
i=`cat /etc/hostname|grep -o .$` 
rm dns64-$i.txt 
for b in {0..255} 
do 
    /usr/bin/time -f "%E" -o dns64-$i.txt \ 
       –a ./dns-st-c.sh $i $b 
done 
 

As it can be seen from the code above, the bash script 

performs 256 experiments and measures the execution time 

of each execution of the dns-st-c.sh script. The latter 

script was changed in [8] to request only the AAAA record 

(without the -t AAAA option it also requested the MX record 

in [6] and [7]). The change can be justified by the fact that 

though requesting the MX record is the default behavior of 

the host command, it is not need in the vast majority of the 

cases (e.g. when opening a web page). Thus we decided to 

implement the latest version of the script in our program. It 

is the following: 
 
#!/bin/bash 
for c in {0..252..4} # that is 64 iterations 
do 
    host –t AAAA 10-$1-$2-$c.zonat.tilb.sze.hu & 
    host –t AAAA 10-$1-$2-$((c+1)).zonat.tilb.sze.hu & 
    host –t AAAA 10-$1-$2-$((c+2)).zonat.tilb.sze.hu & 
    host –t AAAA 10-$1-$2-$((c+3)).zonat.tilb.sze.hu 
done 
 

The script was designed to issue four host commands 

concurrently to utilize the computing power of all the four 

cores of our client computers. 

Of course, the interpretation of the bash shell script and the 

starting of 65536 host commands by each clients are rather 

time and computing power consuming. We need a much 

more efficient test program to be able to measure the 

performance of multi-threaded DNS64 implementations 

executed by current multi-core computers with several CPU 

cores. Replacing the two bash shell scripts by a single (but 

multi-threaded) C/C++ program can be at least an order of 

magnitude faster. 

III. THEORETICAL BACKGROUND 

To be able to implement the presented algorithm in C/C++ 

(or just to follow the design steps) one need to know the 

structure of the DNS messages and the basics of TCP/IP 

socket interface programming. 

A. The Structure of DNS Messages 

We have given an in-depth introduction to the structure of 

DNS messages in [15], where we disclosed the design 

principles of MTD64, our new multi-threaded DNS64 

implementation. Now, we give a very short summary of the 

information relevant for our test program on the basis of 

[15]. We mention only those fields of the DNS message 

here, which were actually used in our program. (For more 

details see [15] or the specifying RFC [16].) 

1) Top level structure 

The DNS query and reply messages usually travel over 

UDP. A DNS message is built up by five sections, these are: 

Header, Question, Answer, Authority, Additional sections. 

Whereas the length of the Header section is always 12 bytes, 

the latter four sections have variable length and some of 

them may be empty. 

2) Header section format 

The Header section is built up by six 16-bit fields. The first 

one is Transaction ID, which is used by the client to identify 

the answer of the server for different questions. The second 

16-bit field is decomposed into smaller fields and bits, out of 

which we had to set only the RD (Recursion Desired) bit to 

ask recursive query. (The QR bit should be set to 0 to 

specify query and the also 0 value of the OPCODE field 

means “Standard Query”, what we need.) The third 16-bit 

field is the QDCOUNT field which specifies the number of 

entries in the Question section.  

3) Question section format 

From among the latter 4 sections we deal with the Question 

section only. It contains QDCOUNT number of entries 

(usually 1). An entry is build up by the following three 

fields: The variable length QNAME field contains the 

domain name using special encoding (see: Domain name 

encoding). The QTYPE filed specifies the RR (Resource 

Record) type by 16-bit long binary vales. An AAAA record 

(IPv6 address) is denoted by the value of 0x1C. The 

QCLASS field contains the 0x01 16-bit binary value for 

denoting the IN (Internet) class. 

4) Domain name encoding 

The domain names stored in the QNAME field follow special 

encoding. A domain name is built up by so called labels 

separated from each other by “.” characters. The labels must 

be no longer than 63 characters. When domain names are 

encoded in DNS messages, the first character gives the 

length of the first label then the characters of the first label 

follow. After that, a character stands that specifies the length 

of the next label and the characters of the next label follow, 

etc. Finally, a zero character after the last label signals the 

end of the domain name. We illustrated this encoding with a 

detailed example in [15]. 

B. Basics of TCP/IP Socket Interface Programming 

Before a socket can be used for communication, it must be 

created (or opened) by the socket() function call. Whereas 

programmers must use the bind() function call for assigning 

IP address and port number information to server sockets, it 

can be omitted for clients sockets. Functions sendto() and 

recvfrom() can be used for sending and receiving UDP 

packets, respectively. The latter one is a so-called ‘blocking’ 

function call. To change its behavior, timeout can be set by 

using the setsockopt() function. The return value of the 

socket handling functions should be checked for error and 

the standard perror() function can be used for giving 

appropriate error messages to the user. 

As for the most important data structures, the sendto() 

function takes the IP address and port number of the 

destination host (together with some other pieces of 

information) from a structure of type struct sockaddr. If 
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IPv6 is used then the actual structure is of type struct 

sockaddr_in6 (and its pointer has to be type casted to 

struct sockaddr). The same type of data structures are 

used by recvfrom() to store the parameters of the sender of 

the received packet. 

All the above mentioned functions and data structures are 

well documented in the man pages of the Linux operating 

system. 

IV. DESIGN AND IMPLEMENTATION OF THE TEST PROGRAM 

A. High Level Requirements and Design Decisions 

To achieve the highest possible speed, the whole 

functionality of the two bash shell scripts should be included 

into a single program. The program should be able to utilize 

the computing power of all the CPU cores of the computer 

used for its execution. Therefore, we decided that the 

program be multi-threaded. As for programming language, C 

was found to be appropriate and C++ was used only for 

thread handling. 

The program should follow the testing method defined by 

the bash scripts but it should be suitable for other 

researchers using different test environments. Therefore an 

independent name space should be used for domain name 

resolution and the number of the threads should be a 

parameter. 

The program should be as simple as possible for both 

minimizing the programming effort and making it easily 

understandable and modifiable by others. Therefore the 

program consists of a single file and takes only the essential 

input parameters. 

Other researchers should be able to use, study its operation 

and modify the program as well as distribute their modified 

version. Therefore the test program is distributed under the 

GNU GPL v3 license [17]. 

B. Input Parameters 

The program takes five input parameters: 

1. The first one is the number of the executing client 

(stored in variable a; and is used in the domain 

name right after the beginning “10-” string). 

2. The second one is the number of threads (stored in 

variable n). It MUST be a power of two (e.g. 1, 2, 

4, 8, etc.), but it is not checked by the program. 

3. The third one is the timeout value for the 

recvfrom() function measured in seconds (used 

when the test program waits for the reply of the 

DNS64 server). 

4. The fourth one is the IPv6 address of the DNS64 

server to be tested. 

5. The fifth one is the port number at the server (where 

the DNS64 program listens). It was put to the last 

position because it is optional. If it is not specified 

then 53 is used as the default value. 

C. Structure and Operation of the Test Program 

The whole program contains three functions only: 

 Function main() reads the input parameters, and 

executes a cycle for b=0..255. Each cycle contains 

an experiment. The execution time of each 

experiment is measured (and printed out). In each 

experiment, n number of threads are started (the 

program code of the threads is the dnstest() 

function), and they each are to perform N=256/n 

number of DNS queries for AAAA records.  

 Function dnstest() is executed as a thread. It takes 

six parameters: a, b, c0, N, the timeout value (as a 

struct timeval * pointer), the IPv6 address of 

the DNS64 server to be tested (in the appropriate 

format in a struct addrinfo) and the port number 

at the DNS64 server. It issues N number of AAAA 

queries for domain names beginning with the 10-a-

b-{c0..c0+N-1} labels. 

 Function dnsencode() encodes the domain name 

with the special encoding introduced in subsection 

III.A.4. 

D. Implementation Details 

1) Name space for the experiments 

An independent name space was chosen so that the program 

could be used anywhere by anyone. The program requests 

the AAAA records of the 10-a-b-c.dns64perf.test 

domain names, where the values of the a, b and c variables 

are printed out in decimal format.  

2) Time measurement 

The standard clock_gettime() function is used for time 

measurements. It uses nanosecond resolution, however its 

accuracy is not necessarily 1 nanosecond. The result is 

printed out is milliseconds as the usual values of the 

execution time of one experiments is from a couple times ten 

to a couple time hundred milliseconds in a typical setup. The 

source code can be easily modified if a different (e.g. 

microsecond) resolution is preferred. 

3) Preparation of the DNS queries 

When a new DNS query is prepared, first, its whole memory 

area is initialized to 0x00 by the memset() function. One 

may decide to omit it as the majority of the area is 

overwritten with new values. However, then care must be 

taken to set some bytes to zero, as the current code assumes 

that the memory area has just been initialized to zero. 

The unique value for the 16-bit Transaction ID is composed 

of the values of variables a and b. The next 16-bit field was 

set to ask standard recursive query. The number of questions 

was set to 1. The QNAME field of the Question section was 

encoded by the before mentioned dnsencode() function. 

Finally, the values of the QTYPE and QCLASS fields were 

set as we specified them in subsection III.A.3. 

4) Compilation and linking 

The test program was compiled and linked using the 

following command line: 
g++ -std=c++11 -O4 dns64perf.cc -lrt -lpthread \ 
  -o dns64perf 

V. TESTING AND RESULTS 

The performance of our new test program named dns64perf 

was compared to that of the original bash scripts using 

identical hardware and software environment. 

A. Test Network 

A very simple test network was used, see Fig. 1. Both the 
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DNS64 server and authoritative DNS server were running on 

the same Intel desktop computer shown at the top of the 

figure. The test program was executed by the Raspberry Pi 2 

single board computer (see at the bottom of the figure). The 

two computers were interconnected by a 3Com switch.  

The devices had the following hardware and software 

configuration: 

Desktop computer: 3200GHz Intel Core i5-4570 CPU 

(4 cores, 6MB L3 cache), 16GB 1600MHz DDR3 SDRAM, 

250GB SSD; Debian GNU/Linux 7.8 operating system. 

Raspberry Pi 2 Model B: 900MHz Broadcom BCM2836 

CPU (4 cores, ARM Cortex-A7), 1GB RAM, 16GB 

microSD card (Class 10); Debian GNU/Linux 8.0 operating 

system. 

switch: 3CGSU05 5-port 3Com Gigabit Ethernet switch 

B. Testing Method 

1) Authoritative DNS server 

BIND 9.8.4 was used as authoritative DNS server. The zone 

file for the dns64perf.test zone was generated by the 

following script: 
 
#!/bin/bash 
cat > db.dns64perf.test << EOF 
 
\$ORIGIN dns64perf.test. 
\$TTL    86400 
@       IN      SOA     localhost. root.localhost. ( 
           2015033101     ; Serial 
               604800     ; Refresh 
                86400     ; Retry 
              2419200     ; Expire 
                86400 )   ; Negative Cache TTL 
; 
@       IN      NS      localhost. 
 
EOF 
 
for a in {0..255} 
do 
    for b in {0..255} 

    do 
        echo '$'GENERATE 0-255 10-$a-$b-$ IN A \ 
            10.$a.$b.$ >> db.dns64perf.test 
    done 
done 
echo "" >> db.dns64perf.test 
 

Note that the $GENERATE directive is a shorthand. One line of 

this kind is equivalent to 256 traditional A record lines. 

To tell BIND about the new zone, the named.conf.local 

configuration file of BIND was appended with the following 

lines: 
 
zone "dns64perf.test" { 
    type master; 
    file "/etc/bind/db.dns64perf.test"; 
 

BIND was made to listen on port 1053 using the following 

line in the named.conf.options file: 
 
listen-on port 1053 { 127.0.0.1; }; 
 

2) DNS64 server 

TOTD 1.5.2 was used as DNS64 server. Its setup was very 

simple. TOTD was made known that the authoritative DNS 

server was listening on port 1053 of localhost and the 

prefix for the generation of IPv4 embedded IPv6 addresses 

was set to dead:beef::/96 using the following two lines in the 

totd.conf file: 
 
forwarder 127.0.0.1 port 1053 
prefix dead:beef:: 
 

3) Measurement with the shell scripts 

First, the dns-st-c.sh script was modified to use the new 

independent namespace:  
 
#!/bin/bash 
for c in {0..252..4} # that is 64 iterations 
do 
    host –t AAAA 10-$1-$2-$c.dns64perf.test & 
    host –t AAAA 10-$1-$2-$((c+1)).dns64perf.test & 
    host –t AAAA 10-$1-$2-$((c+2)).dns64perf.test & 
    host –t AAAA 10-$1-$2-$((c+3)).dns64perf.test 
done 
 

Then our TOTD DNS64 server was set as the primary DNS 

server of the Linux system. The following line was inserted 

as the first line of the /etc/resolv.conf file at the 

Raspberry Pi 2 computer: 
 
nameserver 2002:4f79:cc1:0:da50:e6ff:febb:703e 
 

After that, the DNS64 name resolution was working 

correctly. It was tested by the following command: 
 
host -t AAAA 10-1-1-1.dns64perf.test 
10-1-1-1.dns64perf.test has IPv6 address 
dead:beef::a01:101 
 

Finally, the bash shell scripts were executed. The results can 

be found in Table 1. 

4) Measurement with dns64perf 

The test program was executed as the “first” client (a=1), 

using all the 4 cores of the CPU and the timeout was set to 1 

second using the following command line: 
 
./dns64perf 1 4 1 2002:4f79:cc1:0:da50:e6ff:febb:703e 
 

Raspberry Pi 2 
Model B

2002:4f79:cc1:0:da50:e6ff:febb:703e/64

dns64perf 
test program

BIND
Authoritative 

DNS server 
+

TOTD
DNS64 server

3Com 3CGSU05  
Gigabit switch

2002:4f79:cc1:0:ba27:ebff:fe25:9f7d/64

Desktop 
Computer

 
 

Fig. 1.  DNS64 test network. 
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The program was also executed using only a single thread 

for the purpose of comparison. 

C. Results and Evaluation 

Table 1 shows the results of the tests. For all three tests, 

average and standard deviation of the execution times of the 

256 experiments were calculated and also the maximum 

values were selected. 

The performance (the number of AAAA record requests per 

second) was calculated according to (1). 

E

AAAA
t

N
256

  (1) 

Where NAAAA and tE denote the number of AAAA record 

requests per second and the average execution time of an 

experiment (that is sending of 256 AAAA record requests), 

respectively. 

 

The results show that dns64perf (using 4 threads) could 

perform an average of 5234 AAAA record queries per 

second, whereas the shell scripts could do only 55. This 

means that our programming efforts resulted in a 95 times 

speed-up.  

It can also be observed that the standard deviation of the 

execution time was as low as 0.018s (which is less than 

0.4% of the 4.663s average value) using the bash scripts. But 

it became relatively much higher using dns64perf: its 0.007s 

value is more than 14% of the 0.049s average. And also the 

maximum value of the execution time (0.079s) is now 

significantly higher than the average. We consider that it was 

caused by the way the threads are used: they always have to 

wait for the latest finishing one before the experiment can be 

completed. We checked our hypothesis with the results of 

the single thread execution. In this case, the 0.011s standard 

deviation value is only 6.6% of the 0.167s average. And also 

the maximum value of the execution time (0.193s) is much 

closer to the average. 

D. Discussion of the Results 

We have also checked the CPU utilization1 of both the 

desktop computer and the Raspberry Pi 2 using the top2 

Linux command. These values were observed by human 

eyes only, and they were even fluctuating, therefore the 

following numbers are to be interpreted as order of 

magnitude estimations. They will be used for qualitative 

 
1 It was done not during the above measurements because it could have 

influenced the execution speed of the programs, but during repeated ones. 
2 This command gives both a summary of the CPU states (e.g. user, 

system, idle, wait, etc.) and a list of the most resource consuming processes 

displaying their percentage of CPU and memory consumption. However, 

the interpretation of 100 percent is different in the two cases. In the CPU 

summary, 100% means all the computing power of the existing CPU cores. 

In the process list, 100% means the computing power of a single core. 

Therefore we will always specify, how “100%” is to be interpreted. 

analysis only, to find out the limits of the testing 

environment, that is: which component of the system limited 

the results? 

When the bash shell scripts were used for testing, both 

BIND and TOTD used only about 1-2% of the computing 

power of a CPU core of the desktop computer, while the 

CPU idle time was only 5-6% (of the computing power of all 

4 cores) at the Raspberry Pi 2 (that is, it was nearly fully 

utilized). Therefore it is clear that the performance of the 

client limited the performance of the system. 

When dns64perf used 4 threads, TOTD used 90-95% of a 

CPU core of the desktop computer (BIND was under 40%, 

so it was not the bottleneck) while the Raspberry Pi 2 had 

more than 80% idle time. (The network could not be the 

bottleneck: DNS AAAA queries and answers were about 

100-110 bytes and 210-220 bytes long, respectively. Let us 

consider the longer ones: about 5300 answers being each 

220 bytes long would result in less than 10 Mbit per second 

whereas Raspberry Pi 2 has Fast Ethernet NIC.) Therefore, 

the bottleneck was the single threaded TOTD DNS64 

implementation. We have also checked the CPU utilization 

value of TOTD when dns64perf used only one thread: 

TOTD used 45-47% of the computing power of a CPU core. 

(And it was 77-82% with dns64perf using 2 threads.) Thus 

we can clearly state that dns64perf can perform significantly 

better! 

On the one hand it would be interesting to measure how 

many times dns64perf is faster than the method using bash 

shell scripts, but on the other hand the result would be useful 

for being proud of it only and nothing else. The performance 

ratio which has a real significance in DNS64 testing, is the 

following: dns64perf executed by a single board computer 

can produce enough load to test the performance of a 

DNS64 server implementation executed by the CPU of a 

modern PC. This result opens up the possibility of testing 

modern servers (e.g. with 16, 32 or even more cores) using 

dns64perf executed by a cluster of SBCs. This can be a very 

much cost effective solution. 

VI. DIRECTIONS OF OUR FUTURE RESEARCH 

A. Testing with an SBC cluster 

Our next step is to build a 16 element cluster of ODROID 

C1+ [18] SBCs for load generation. We plan to use 

dns64perf to test the same four DNS64 implementations 

which we tested in [8], but now we will be able to test their 

performance up to 16 cores (instead of up to 4 cores). 

B. Plans for Benchmarking RFC 

Benchmarking methodology for network interconnect 

devices was described in RFC 2544. It was expanded to 

address some IPv6 specificities in RFC 5180. However, it is 

stated there, that IPv6 transition mechanisms are outside the 

scope of the RFC. 

Efforts were made to define benchmarking methodology for 

IPv6 transition technologies [19]. For more details of the 

measurements, see [20]. Marius Georgescu (the first author 

of [20]) has invited the author of this paper to take part in 

the further development of the draft RFC [19], to cover the 

testing methodology of DNS64 servers, too. 

TABLE I 

DNS64 PERFORMANCE TEST RESULTS 

 bash shell 

scripts 

dns64perf 

 4 threads 1 thread 

Execution time 

of one experi-

ment (s) 

average 4.663 0.049 0.167 

std. dev. 0.018 0.007 0.011 

maximum 4.710 0.079 0.193 

Performance (requests/s)     55 5234 1535 
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VII. CONCLUSION 

We conclude that our efforts to make an efficient test 

program for the performance analysis of DNS64 servers 

were successful. Our new test program, dns64perf can 

perform at least 95 times more AAAA record queries per 

second than the old bash shell scripts could, but we have 

shown that its performance is even higher than that. We 

hope that dns64perf may be a useful testing tool for many 

researchers interested in the performance analysis of 

different DNS64 server implementations. The source code of 

the program is available under the GNU General Public 

License v3 from [21]. 
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