



Abstract—In our earlier research papers, bash shell scripts

using the host Linux command were applied for testing the

performance and stability of different DNS64 server imple-

mentations. Because of their inefficiency, a small multi-

threaded C/C++ program (named dns64perf) was written

which can directly send DNS AAAA record queries. After the

introduction to the essential theoretical background about the

structure of DNS messages and TCP/IP socket interface

programming, the design decisions and implementation details

of our DNS64 performance test program are disclosed. The

efficiency of dns64perf is compared to that of the old method

using bash shell scripts. The result is convincing: dns64perf can

send at least 95 times more DNS AAAA record queries per

second. The source code of dns64perf is published under the

GNU GPLv3 license to support the work of other researchers in

the field of testing the performance of DNS64 servers.

Keywords—DNS64, DNS query, Linux, performance

analysis, TCP/IP socket interface programming.

I. INTRODUCTION

The combination of DNS64 [1] and NAT64 [2] is the best

available solution which can enable IPv6 only clients to

communicate with IPv4 only servers. There are several

DNS64 and NAT64 implementations exist and the network

operators need to choose the one that best fits for their

purposes. Performance, stability and security are all very

important aspects.

Several papers were published concerning the performance

of DNS64 and NAT64 implementations, e.g. [3]-[5],

however their authors measured the common performance of

the combination of a given DNS64 implementation and a

given NAT64 implementation. We have shown in [6] that

the performance of the NAT64 and DNS64 implementations

should be measured independently.

In our previous works [6]-[8], we measured the performance

of several DNS64 implementations using single core and

also multi-core test devices. We used simple bash shell

scripts for load generation (see details in section II), but they

proved to be inefficient and therefore we decided to prepare

a small special purpose C/C++ test program. We do not

know of any other similar test program for the performance

analysis of DNS64 servers, except for the general DNS

server performance test program called DNSPerf [9] which

could be used, however it uses a text file as input [10] and

thus the reading and processing of the text file may be a

Manuscript received June 3, 2015, revised August 29, 2015.

G. Lencse is with the Department of Telecommunications, Széchenyi

István University, Győr, Hungary (phone: +36-20-775-82-67, fax: +36-96-

613-646, e-mail: lencse@sze.hu)

bottleneck. (The uncompressed size of its sample query

input file [11] is 248,609,309 bytes.) As for the hardware

platform of the load generator for our further DNS64

performance measurements, we plan to use a cluster of SBCs

(Single Board Computer), similar to the one documented in

[12] but with more powerful SBCs. (We have already

benchmarked some of them [13] and we are currently

designing a 16 element cluster.) The SBCs use micro SD

cards as storage and they produce poor transfer rate (e.g. 10-

20MB/s), thus the reading of hundreds of megabytes size

files from a micro SD card may be a serious bottleneck.

Therefore we considered that a small special purpose

DNS64 performance test program was worth writing. In this

paper, we discuss the design, implementation and testing of

our DNS64 performance test program.

The remainder of this paper is organized as follows. The

DNS64 server performance testing algorithm to be

implemented by the test program is discussed in section II.

The theoretical background including the structure of the

DNS messages and the basics of TCP/IP socket interface

programming is summarized in section III. The design and

implementation questions are detailed in section IV. The

method of the comparison of the performances of the old

bash scripts and of the new test program is disclosed and the

results are presented and discussed in section V. Our plans

for future research are outlined in section VI.

II. ALGORITHM FOR THE TEST PROGRAM

We were satisfied with the testing method used in [6]-[8]

therefore our goal was to design and implement a test

program which performs very similar tests but at least one

order of magnitude faster.

The original testing method was designed to eliminate the

effect of caching therefore it requested name resolution for

different domain names. Originally, we used the namespace

of 10-{0..10}-{0..255}-{0..255}.zonat.tilb.sze.hu which was

mapped to the 10.0.0.0 – 10.10.255.255 IPv4 address only

and to no IPv6 address. (It was the task of the DNS64 server

to synthesize the so called IPv4 Embedded IPv6 Addresses

[14] for these domain names.)

In order to make a well tunable load generator, we used 1-8

computers, which executed the same bash scripts. The

synchronized start of the client scripts was done by using the

“Send Input to All Sessions” function of the terminal

program of KDE (called Konsole) in [6] and [7] and it was

done by using multicast in [8].

To ensure non-overlapping namespace for each client

computers, the number of the computers were included into

the domain name generation: it was used as the number right

Test Program for the Performance Analysis of

DNS64 Servers

Gábor Lencse

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 4, No. 3 (2015)

6010.11601/ijates.v4i3.121

after the beginning “10-” string. The two other numbers

from 0 to 255 made it possible for each clients to generate

65536 different domain names. They were grouped into 256

experiments (256 requests were sent in each of them) and

the time of each experiments were measured. Two bash

scripts were used. The first one was:

#!/bin/bash
i=`cat /etc/hostname|grep -o .$`
rm dns64-$i.txt
for b in {0..255}
do
 /usr/bin/time -f "%E" -o dns64-$i.txt \
 –a ./dns-st-c.sh $i $b
done

As it can be seen from the code above, the bash script

performs 256 experiments and measures the execution time

of each execution of the dns-st-c.sh script. The latter

script was changed in [8] to request only the AAAA record

(without the -t AAAA option it also requested the MX record

in [6] and [7]). The change can be justified by the fact that

though requesting the MX record is the default behavior of

the host command, it is not need in the vast majority of the

cases (e.g. when opening a web page). Thus we decided to

implement the latest version of the script in our program. It

is the following:

#!/bin/bash
for c in {0..252..4} # that is 64 iterations
do
 host –t AAAA 10-$1-$2-$c.zonat.tilb.sze.hu &
 host –t AAAA 10-$1-$2-$((c+1)).zonat.tilb.sze.hu &
 host –t AAAA 10-$1-$2-$((c+2)).zonat.tilb.sze.hu &
 host –t AAAA 10-$1-$2-$((c+3)).zonat.tilb.sze.hu
done

The script was designed to issue four host commands

concurrently to utilize the computing power of all the four

cores of our client computers.

Of course, the interpretation of the bash shell script and the

starting of 65536 host commands by each clients are rather

time and computing power consuming. We need a much

more efficient test program to be able to measure the

performance of multi-threaded DNS64 implementations

executed by current multi-core computers with several CPU

cores. Replacing the two bash shell scripts by a single (but

multi-threaded) C/C++ program can be at least an order of

magnitude faster.

III. THEORETICAL BACKGROUND

To be able to implement the presented algorithm in C/C++

(or just to follow the design steps) one need to know the

structure of the DNS messages and the basics of TCP/IP

socket interface programming.

A. The Structure of DNS Messages

We have given an in-depth introduction to the structure of

DNS messages in [15], where we disclosed the design

principles of MTD64, our new multi-threaded DNS64

implementation. Now, we give a very short summary of the

information relevant for our test program on the basis of

[15]. We mention only those fields of the DNS message

here, which were actually used in our program. (For more

details see [15] or the specifying RFC [16].)

1) Top level structure

The DNS query and reply messages usually travel over

UDP. A DNS message is built up by five sections, these are:

Header, Question, Answer, Authority, Additional sections.

Whereas the length of the Header section is always 12 bytes,

the latter four sections have variable length and some of

them may be empty.

2) Header section format

The Header section is built up by six 16-bit fields. The first

one is Transaction ID, which is used by the client to identify

the answer of the server for different questions. The second

16-bit field is decomposed into smaller fields and bits, out of

which we had to set only the RD (Recursion Desired) bit to

ask recursive query. (The QR bit should be set to 0 to

specify query and the also 0 value of the OPCODE field

means “Standard Query”, what we need.) The third 16-bit

field is the QDCOUNT field which specifies the number of

entries in the Question section.

3) Question section format

From among the latter 4 sections we deal with the Question

section only. It contains QDCOUNT number of entries

(usually 1). An entry is build up by the following three

fields: The variable length QNAME field contains the

domain name using special encoding (see: Domain name

encoding). The QTYPE filed specifies the RR (Resource

Record) type by 16-bit long binary vales. An AAAA record

(IPv6 address) is denoted by the value of 0x1C. The

QCLASS field contains the 0x01 16-bit binary value for

denoting the IN (Internet) class.

4) Domain name encoding

The domain names stored in the QNAME field follow special

encoding. A domain name is built up by so called labels

separated from each other by “.” characters. The labels must

be no longer than 63 characters. When domain names are

encoded in DNS messages, the first character gives the

length of the first label then the characters of the first label

follow. After that, a character stands that specifies the length

of the next label and the characters of the next label follow,

etc. Finally, a zero character after the last label signals the

end of the domain name. We illustrated this encoding with a

detailed example in [15].

B. Basics of TCP/IP Socket Interface Programming

Before a socket can be used for communication, it must be

created (or opened) by the socket() function call. Whereas

programmers must use the bind() function call for assigning

IP address and port number information to server sockets, it

can be omitted for clients sockets. Functions sendto() and

recvfrom() can be used for sending and receiving UDP

packets, respectively. The latter one is a so-called ‘blocking’

function call. To change its behavior, timeout can be set by

using the setsockopt() function. The return value of the

socket handling functions should be checked for error and

the standard perror() function can be used for giving

appropriate error messages to the user.

As for the most important data structures, the sendto()

function takes the IP address and port number of the

destination host (together with some other pieces of

information) from a structure of type struct sockaddr. If

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 4, No. 3 (2015)

61

IPv6 is used then the actual structure is of type struct

sockaddr_in6 (and its pointer has to be type casted to

struct sockaddr). The same type of data structures are

used by recvfrom() to store the parameters of the sender of

the received packet.

All the above mentioned functions and data structures are

well documented in the man pages of the Linux operating

system.

IV. DESIGN AND IMPLEMENTATION OF THE TEST PROGRAM

A. High Level Requirements and Design Decisions

To achieve the highest possible speed, the whole

functionality of the two bash shell scripts should be included

into a single program. The program should be able to utilize

the computing power of all the CPU cores of the computer

used for its execution. Therefore, we decided that the

program be multi-threaded. As for programming language, C

was found to be appropriate and C++ was used only for

thread handling.

The program should follow the testing method defined by

the bash scripts but it should be suitable for other

researchers using different test environments. Therefore an

independent name space should be used for domain name

resolution and the number of the threads should be a

parameter.

The program should be as simple as possible for both

minimizing the programming effort and making it easily

understandable and modifiable by others. Therefore the

program consists of a single file and takes only the essential

input parameters.

Other researchers should be able to use, study its operation

and modify the program as well as distribute their modified

version. Therefore the test program is distributed under the

GNU GPL v3 license [17].

B. Input Parameters

The program takes five input parameters:

1. The first one is the number of the executing client

(stored in variable a; and is used in the domain

name right after the beginning “10-” string).

2. The second one is the number of threads (stored in

variable n). It MUST be a power of two (e.g. 1, 2,

4, 8, etc.), but it is not checked by the program.

3. The third one is the timeout value for the

recvfrom() function measured in seconds (used

when the test program waits for the reply of the

DNS64 server).

4. The fourth one is the IPv6 address of the DNS64

server to be tested.

5. The fifth one is the port number at the server (where

the DNS64 program listens). It was put to the last

position because it is optional. If it is not specified

then 53 is used as the default value.

C. Structure and Operation of the Test Program

The whole program contains three functions only:

 Function main() reads the input parameters, and

executes a cycle for b=0..255. Each cycle contains

an experiment. The execution time of each

experiment is measured (and printed out). In each

experiment, n number of threads are started (the

program code of the threads is the dnstest()

function), and they each are to perform N=256/n

number of DNS queries for AAAA records.

 Function dnstest() is executed as a thread. It takes

six parameters: a, b, c0, N, the timeout value (as a

struct timeval * pointer), the IPv6 address of

the DNS64 server to be tested (in the appropriate

format in a struct addrinfo) and the port number

at the DNS64 server. It issues N number of AAAA

queries for domain names beginning with the 10-a-

b-{c0..c0+N-1} labels.

 Function dnsencode() encodes the domain name

with the special encoding introduced in subsection

III.A.4.

D. Implementation Details

1) Name space for the experiments

An independent name space was chosen so that the program

could be used anywhere by anyone. The program requests

the AAAA records of the 10-a-b-c.dns64perf.test

domain names, where the values of the a, b and c variables

are printed out in decimal format.

2) Time measurement

The standard clock_gettime() function is used for time

measurements. It uses nanosecond resolution, however its

accuracy is not necessarily 1 nanosecond. The result is

printed out is milliseconds as the usual values of the

execution time of one experiments is from a couple times ten

to a couple time hundred milliseconds in a typical setup. The

source code can be easily modified if a different (e.g.

microsecond) resolution is preferred.

3) Preparation of the DNS queries

When a new DNS query is prepared, first, its whole memory

area is initialized to 0x00 by the memset() function. One

may decide to omit it as the majority of the area is

overwritten with new values. However, then care must be

taken to set some bytes to zero, as the current code assumes

that the memory area has just been initialized to zero.

The unique value for the 16-bit Transaction ID is composed

of the values of variables a and b. The next 16-bit field was

set to ask standard recursive query. The number of questions

was set to 1. The QNAME field of the Question section was

encoded by the before mentioned dnsencode() function.

Finally, the values of the QTYPE and QCLASS fields were

set as we specified them in subsection III.A.3.

4) Compilation and linking

The test program was compiled and linked using the

following command line:
g++ -std=c++11 -O4 dns64perf.cc -lrt -lpthread \
 -o dns64perf

V. TESTING AND RESULTS

The performance of our new test program named dns64perf

was compared to that of the original bash scripts using

identical hardware and software environment.

A. Test Network

A very simple test network was used, see Fig. 1. Both the

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 4, No. 3 (2015)

62

DNS64 server and authoritative DNS server were running on

the same Intel desktop computer shown at the top of the

figure. The test program was executed by the Raspberry Pi 2

single board computer (see at the bottom of the figure). The

two computers were interconnected by a 3Com switch.

The devices had the following hardware and software

configuration:

Desktop computer: 3200GHz Intel Core i5-4570 CPU

(4 cores, 6MB L3 cache), 16GB 1600MHz DDR3 SDRAM,

250GB SSD; Debian GNU/Linux 7.8 operating system.

Raspberry Pi 2 Model B: 900MHz Broadcom BCM2836

CPU (4 cores, ARM Cortex-A7), 1GB RAM, 16GB

microSD card (Class 10); Debian GNU/Linux 8.0 operating

system.

switch: 3CGSU05 5-port 3Com Gigabit Ethernet switch

B. Testing Method

1) Authoritative DNS server

BIND 9.8.4 was used as authoritative DNS server. The zone

file for the dns64perf.test zone was generated by the

following script:

#!/bin/bash
cat > db.dns64perf.test << EOF

\$ORIGIN dns64perf.test.
\$TTL 86400
@ IN SOA localhost. root.localhost. (
 2015033101 ; Serial
 604800 ; Refresh
 86400 ; Retry
 2419200 ; Expire
 86400) ; Negative Cache TTL
;
@ IN NS localhost.

EOF

for a in {0..255}
do
 for b in {0..255}

 do
 echo '$'GENERATE 0-255 10-$a-$b-$ IN A \
 10.$a.$b.$ >> db.dns64perf.test
 done
done
echo "" >> db.dns64perf.test

Note that the $GENERATE directive is a shorthand. One line of

this kind is equivalent to 256 traditional A record lines.

To tell BIND about the new zone, the named.conf.local

configuration file of BIND was appended with the following

lines:

zone "dns64perf.test" {
 type master;
 file "/etc/bind/db.dns64perf.test";

BIND was made to listen on port 1053 using the following

line in the named.conf.options file:

listen-on port 1053 { 127.0.0.1; };

2) DNS64 server

TOTD 1.5.2 was used as DNS64 server. Its setup was very

simple. TOTD was made known that the authoritative DNS

server was listening on port 1053 of localhost and the

prefix for the generation of IPv4 embedded IPv6 addresses

was set to dead:beef::/96 using the following two lines in the

totd.conf file:

forwarder 127.0.0.1 port 1053
prefix dead:beef::

3) Measurement with the shell scripts

First, the dns-st-c.sh script was modified to use the new

independent namespace:

#!/bin/bash
for c in {0..252..4} # that is 64 iterations
do
 host –t AAAA 10-$1-$2-$c.dns64perf.test &
 host –t AAAA 10-$1-$2-$((c+1)).dns64perf.test &
 host –t AAAA 10-$1-$2-$((c+2)).dns64perf.test &
 host –t AAAA 10-$1-$2-$((c+3)).dns64perf.test
done

Then our TOTD DNS64 server was set as the primary DNS

server of the Linux system. The following line was inserted

as the first line of the /etc/resolv.conf file at the

Raspberry Pi 2 computer:

nameserver 2002:4f79:cc1:0:da50:e6ff:febb:703e

After that, the DNS64 name resolution was working

correctly. It was tested by the following command:

host -t AAAA 10-1-1-1.dns64perf.test
10-1-1-1.dns64perf.test has IPv6 address
dead:beef::a01:101

Finally, the bash shell scripts were executed. The results can

be found in Table 1.

4) Measurement with dns64perf

The test program was executed as the “first” client (a=1),

using all the 4 cores of the CPU and the timeout was set to 1

second using the following command line:

./dns64perf 1 4 1 2002:4f79:cc1:0:da50:e6ff:febb:703e

Raspberry Pi 2
Model B

2002:4f79:cc1:0:da50:e6ff:febb:703e/64

dns64perf
test program

BIND
Authoritative

DNS server
+

TOTD
DNS64 server

3Com 3CGSU05
Gigabit switch

2002:4f79:cc1:0:ba27:ebff:fe25:9f7d/64

Desktop
Computer

Fig. 1. DNS64 test network.

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 4, No. 3 (2015)

63

The program was also executed using only a single thread

for the purpose of comparison.

C. Results and Evaluation

Table 1 shows the results of the tests. For all three tests,

average and standard deviation of the execution times of the

256 experiments were calculated and also the maximum

values were selected.

The performance (the number of AAAA record requests per

second) was calculated according to (1).

E

AAAA
t

N
256

 (1)

Where NAAAA and tE denote the number of AAAA record

requests per second and the average execution time of an

experiment (that is sending of 256 AAAA record requests),

respectively.

The results show that dns64perf (using 4 threads) could

perform an average of 5234 AAAA record queries per

second, whereas the shell scripts could do only 55. This

means that our programming efforts resulted in a 95 times

speed-up.

It can also be observed that the standard deviation of the

execution time was as low as 0.018s (which is less than

0.4% of the 4.663s average value) using the bash scripts. But

it became relatively much higher using dns64perf: its 0.007s

value is more than 14% of the 0.049s average. And also the

maximum value of the execution time (0.079s) is now

significantly higher than the average. We consider that it was

caused by the way the threads are used: they always have to

wait for the latest finishing one before the experiment can be

completed. We checked our hypothesis with the results of

the single thread execution. In this case, the 0.011s standard

deviation value is only 6.6% of the 0.167s average. And also

the maximum value of the execution time (0.193s) is much

closer to the average.

D. Discussion of the Results

We have also checked the CPU utilization1 of both the

desktop computer and the Raspberry Pi 2 using the top2

Linux command. These values were observed by human

eyes only, and they were even fluctuating, therefore the

following numbers are to be interpreted as order of

magnitude estimations. They will be used for qualitative

1 It was done not during the above measurements because it could have

influenced the execution speed of the programs, but during repeated ones.
2 This command gives both a summary of the CPU states (e.g. user,

system, idle, wait, etc.) and a list of the most resource consuming processes

displaying their percentage of CPU and memory consumption. However,

the interpretation of 100 percent is different in the two cases. In the CPU

summary, 100% means all the computing power of the existing CPU cores.

In the process list, 100% means the computing power of a single core.

Therefore we will always specify, how “100%” is to be interpreted.

analysis only, to find out the limits of the testing

environment, that is: which component of the system limited

the results?

When the bash shell scripts were used for testing, both

BIND and TOTD used only about 1-2% of the computing

power of a CPU core of the desktop computer, while the

CPU idle time was only 5-6% (of the computing power of all

4 cores) at the Raspberry Pi 2 (that is, it was nearly fully

utilized). Therefore it is clear that the performance of the

client limited the performance of the system.

When dns64perf used 4 threads, TOTD used 90-95% of a

CPU core of the desktop computer (BIND was under 40%,

so it was not the bottleneck) while the Raspberry Pi 2 had

more than 80% idle time. (The network could not be the

bottleneck: DNS AAAA queries and answers were about

100-110 bytes and 210-220 bytes long, respectively. Let us

consider the longer ones: about 5300 answers being each

220 bytes long would result in less than 10 Mbit per second

whereas Raspberry Pi 2 has Fast Ethernet NIC.) Therefore,

the bottleneck was the single threaded TOTD DNS64

implementation. We have also checked the CPU utilization

value of TOTD when dns64perf used only one thread:

TOTD used 45-47% of the computing power of a CPU core.

(And it was 77-82% with dns64perf using 2 threads.) Thus

we can clearly state that dns64perf can perform significantly

better!

On the one hand it would be interesting to measure how

many times dns64perf is faster than the method using bash

shell scripts, but on the other hand the result would be useful

for being proud of it only and nothing else. The performance

ratio which has a real significance in DNS64 testing, is the

following: dns64perf executed by a single board computer

can produce enough load to test the performance of a

DNS64 server implementation executed by the CPU of a

modern PC. This result opens up the possibility of testing

modern servers (e.g. with 16, 32 or even more cores) using

dns64perf executed by a cluster of SBCs. This can be a very

much cost effective solution.

VI. DIRECTIONS OF OUR FUTURE RESEARCH

A. Testing with an SBC cluster

Our next step is to build a 16 element cluster of ODROID

C1+ [18] SBCs for load generation. We plan to use

dns64perf to test the same four DNS64 implementations

which we tested in [8], but now we will be able to test their

performance up to 16 cores (instead of up to 4 cores).

B. Plans for Benchmarking RFC

Benchmarking methodology for network interconnect

devices was described in RFC 2544. It was expanded to

address some IPv6 specificities in RFC 5180. However, it is

stated there, that IPv6 transition mechanisms are outside the

scope of the RFC.

Efforts were made to define benchmarking methodology for

IPv6 transition technologies [19]. For more details of the

measurements, see [20]. Marius Georgescu (the first author

of [20]) has invited the author of this paper to take part in

the further development of the draft RFC [19], to cover the

testing methodology of DNS64 servers, too.

TABLE I

DNS64 PERFORMANCE TEST RESULTS

 bash shell

scripts

dns64perf

 4 threads 1 thread

Execution time

of one experi-

ment (s)

average 4.663 0.049 0.167

std. dev. 0.018 0.007 0.011

maximum 4.710 0.079 0.193

Performance (requests/s) 55 5234 1535

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 4, No. 3 (2015)

64

VII. CONCLUSION

We conclude that our efforts to make an efficient test

program for the performance analysis of DNS64 servers

were successful. Our new test program, dns64perf can

perform at least 95 times more AAAA record queries per

second than the old bash shell scripts could, but we have

shown that its performance is even higher than that. We

hope that dns64perf may be a useful testing tool for many

researchers interested in the performance analysis of

different DNS64 server implementations. The source code of

the program is available under the GNU General Public

License v3 from [21].

ACKNOWLEDGMENT

The author thanks Gábor Horváth, Dept. of Networked

Systems and Services, Budapest University of Technology

for lending the Raspberry Pi 2 single board computer.

REFERENCES

[1] M. Bagnulo, A Sullivan, P. Matthews and I. Beijnum, “DNS64: DNS

extensions for network address translation from IPv6 clients to IPv4

servers”, IETF, April 2011. ISSN: 2070-1721 (RFC 6147)

[2] M. Bagnulo, P. Matthews and I. Beijnum, “Stateful NAT64: Network

address and protocol translation from IPv6 clients to IPv4 servers”,

IETF, April 2011. ISSN: 2070-1721 (RFC 6146)

[3] K. J. O. Llanto and W. E. S. Yu, “Performance of NAT64 versus

NAT44 in the context of IPv6 migration”, in Proc. International

MultiConference of Engineers and Compuer Scientists 2012 (IMECS

2012), Hong Kong, March 14-16, 2012, vol. I, pp. 638-645.

[4] C. P. Monte et al, “Implementation and evaluation of protocols

translating methods for IPv4 to IPv6 transition”, Journal of Computer

Science & Technology, ISSN: 1666-6038, vol. 12, no. 2, (August,

2012). pp. 64-70.

[5] S. Yu, B. E. Carpenter, “Measuring IPv4 – IPv6 translation

techniques”, Technical Report 2012-001, Department of Computer

Science, The University of Auckland, January 2012.

[6] G. Lencse and S. Répás, “Performance analysis and comparison of

different DNS64 implementations for Linux, OpenBSD and

FreeBSD”, in Proc. IEEE 27th Internat. Conf. on Advanced

Information Networking and Applications (AINA 2013), Barcelona,

Spain, 2013, pp. 877–884. DOI: 10.1109/AINA.2013.80

[7] G. Lencse and G. Takács, “Performance analysis of DNS64 and

NAT64 solutions”, Infocommunications Journal, vol. 4, no 2, pp.

29–36, Jun. 2012.

[8] G. Lencse, S. Répás, “Performance analysis and comparison of four

DNS64 implementations under different free operating systems”,

unpublished.

[9] Nominum, “Measurement tools: DNSPerf and ResPerf downloads”,

https://nominum.com/measurement-tools/

[10] die.net, “dnsperf(1) – Linux man page”,

http://linux.die.net/man/1/dnsperf

[11] Nominum, “Sample query input file”,

ftp://ftp.nominum.com/pub/nominum/dnsperf/data/queryfile-

example-10million-201202.gz

[12] S. J. Cox, J. T. Cox, R. P. Boardman, S. J. Johnston, M. Scott, N. S.

O’Brien, “Iridis-pi: a low-cost, compact demonstration cluster”,

Cluster Computing, vol. 17, no. 2, June 2014, pp. 349-358. DOI:

10.1007/s10586-013-0282-7

[13] G. Lencse and S. Répás, "Benchmarking Single Board Computers for

Building a Mini Supercomputer for Simulation", 38th Internat. Conf.

Telecomm. and Signal Proc. (TSP 2015), Prague, Czech Republic,

July 9-11, 2015, Brno University of Technology, pp. 246-251.

[14] C. Bao, C. Huitema, M. Bagnulo, M Boucadair and X. Li, “IPv6

addressing of IPv4/IPv6 translators”, IETF RFC 6052, 2010.

[15] G. Lencse, A. G. Soós, “Design of a tiny multi-threaded DNS64

server”, in Proc. 38th Internat. Conf. Telecomm. and Signal Proc.

(TSP 2015), Prague, Czech Republic, 2015, Brno University of

Technology, pp. 27-32.

[16] P. Mockapetris, “Domain names – implementation and

specification”, IETF, November 1987. (RFC 1035)

[17] Free Software Foundation, GNU General Public License, Version 3,

June 29, 2007, http://www.gnu.org/licenses/gpl-3.0.en.html

[18] Hardkernel, Odroid C1+, (product description of the manufacturer),

http://www.hardkernel.com/main/products/prdt_info.php?g_code=G1

43703355573

[19] M. Georgescu, “Benchmarking Methodology for IPv6 Transition

Technologies”, IETF 93, Prague, Czech Republic, slides available:

https://www.ietf.org/proceedings/93/slides/slides-93-bmwg-6.pdf

[20] M. Georgescu, H. Hazeyama, Y. Kobayashi, S. Yamaguchi,

“Empirical analysis of IPv6 transition technologies using the IPv6

Network Evaluation Testbed”, EAI Endorsed Transactions on

Industrial Networks and Intelligent Systems, vol 2, no 2, e1, (2015),

DOI: 10.4108/inis.2.2.e1

[21] G. Lencse, “dns64perf source code”, http://ipv6.tilb.sze.hu/dns64perf/

Gábor Lencse received his MSc in

electrical engineering and computer

systems at the Technical University of

Budapest in 1994, and his PhD in 2001.

He has been working for the Department of

Telecommunications, Széchenyi István

University in Győr since 1997. He teaches

Computer networks, Computer

architectures, IP-based telecommunication

systems and the Linux operating system.

Now, he is an Associate Professor. He is

responsible for the specialization of the

information and communication

technology of the BSc level electrical

engineering education. He is a founding member of the Multidisciplinary

Doctoral School of Engineering Sciences, Széchenyi István University. The

area of his research includes discrete-event simulation methodology,

performance analysis of computer networks and IPv6 transition

technologies. He has been working part time for the Department of

Networked Systems and Services, Budapest University of Technology and

Economics (the former Technical University of Budapest) since 2005.

There he teaches Computer architectures and Computer networks.

Dr. Lencse is a member of the Institute of Electronics, Information and

Communication Engineers (IEICE).

x

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 4, No. 3 (2015)

65

