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Abstract—In this paper the problem of the Non Minimum
Phase (NMP) channel identification using blind and adaptive
algorithms is theoretically and numerically evaluated in noise
environment case for different signal to noise ratio (SNR). For
this problem, three blind algorithms based on Higher Order
Cumulants (HOC) versus adaptive algorithms, i.e. Recursive
Least Squares (RLS) and Least Mean Squares (LMS) are
presented. In order to assess the performance of these approaches
to identify the parameters of non minimum phase channels,
we have selected the Macchi channel model. The simulation
results in noisy environment and for different data input channel,
provided to illustrate the performance of the blind approaches
and compare them with adaptive algorithms.

Keywords—Higher Order Cumulants, channel identification,
blind algorithms, adaptive algorithms, RLS, LMS.

I. INTRODUCTION

RECENTLY blind channel identification has drawn a great
deal of attentions in the literature [1−10], [12−15]. In

this work, identification of non minimum phase channel driven
by a non gaussian in noisy environment is considered. The first
methods are based on the autocorrelation function (second or-
der cumulants) of the observed sequences. Thus, the autocorre-
lation sequence is insensitive to the phase characteristics of the
system, and a non minimum phase system cannot be identified
correctly using the second order statistics [2], their perfor-
mances degrade when the output is noisy, because the second
order cumulants for a gaussian process are not identically zero.
To overcome these problems, other approaches were proposed
and consist in using higher order cumulants (HOC) [1], this
is because the gaussian noise will vanish in the higher order
cumulants (3rd and 4th cumulants) domain, and the HOC
preserve the phase characteristics, unlike the autocorrelation
function. Further, the autocorrelation sequence fails to provide
a complete statistical description for a non gaussian process,
it was shown that consistent estimates of the parameters of
any finite impulse response (FIR) system can be obtained
by using higher order statistics or cumulants of the observed
process [2−4]. Indeed, the HOS constitute a powerful tool in
modelling stationary processes when the output signal of a
system is corrupte with an additive gaussian noise. However,
blind algorithm allows identification of non minimum phase
channel with only output measurements, unlike the adaptive
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algorithms exploiting the information of input and output
for the impulse response channel estimation, for this reason
the users periodically transmit a training sequence known
by the receiver, which then estimates the impulse response
channel parameters. Indeed, 20% of the bandwidth is devoted
to training in GSM (up to 40% in UMTS). Blind methods are
thus attractive so as to guarantee a high communication rate by
eliminating (or reducing) the training sets [19]. In this paper,
we address the problem of the blind and adaptive identification
of non minimum phase channel. In order to evaluate the
presented algorithms, we consider the Macchi channel model.
The simulation results in noisy environment and for different
data input channel, demonstrate that the blind and adaptive
algorithms could estimate the phase and magnitude of Macchi
channel with different precision.
The rest of this paper is organised as follows: In section II, the
model and its assumptions, basic relationships are presented.
In the following, blind and adaptive algorithms are presented
to estimate the parameters of NMP channel. The simulations
results showing the performance of the developed methods
are presented in section VII. This paper is finally concluded
in section VIII.

II. PROBLEM STATEMENT

A. Channel modeling

We consider non minimum phase channel (Fig. 1) described
by the following diagram:
In noise free case:

H(z) 

)(kx )(ky )(kr

)(kn

Fig. 1. Channel model

y(k) =

q∑
i=0

x(i)h(k − i) (1)

In presence of noise:

r(k) = y(k) + n(k), (2)

where x(i) is the input sequence, h(k) and q are the
parameters and the order of linear channel, respectively, y(k)
represents the channel output in noiseless case and r(k) is
the observed channel output corrupted by additive gaussian
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noise n(k).
For this system we assume that:

• The input sequence, x(i), is independent and identically
distributed (i.i.d) zero mean, and non-gaussian;

• The system is supposed causal and truncated, i.e. h(k) =
0 for k < 0 and k > q, where h(0) = 1;

• The system order q is known;
• The measurement noise sequence n(k) is assumed zero

mean, i.i.d, gaussian and independent of x(i) with
unknown variance.

B. Basic Relationships

In this section, we present the general relationships for
impulse response coefficients that constitute the basic relations
in development of most linear HOC based methods proposed
in the literature.
The mth order cumulants of the y(k) can be expressed as a
function of impulse response coefficients h(k) as follows [17]:

Cm,y(t1, t2, ..., tm−1) = ξm,x

q∑
i=0

h(i)h(i+t1)...h(i+tm−1),

(3)
where ξm,x represents the mth order cumulants of the excita-
tion signal x(i) at origin.
If we take m = 2 into Eq. (3) we obtain the second order
cumulant (autocorrelation function):

C2,y(t1) = ξ2,x

q∑
i=0

h(i)h(i+ t1) (4)

For m = 3, Eq. (3) becomes:

C3,y(t) = ξ3,x

q∑
i=0

h(i)h(i+ t1)h(i+ t2) (5)

Stogioglou and McLaughlin [18] presents the relationship
between different nth cumulants slices of the output signal
y(k), and the coefficients h(k), are linked by the following
relationship:

q∑
j=0

h(j)
[ r∏
k=1

h(j + tk)
]
Cn,y(β1, ..., βr, j + α1, ..., j + αn−r−1)

=
q∑

i=0

h(i)
[ r∏
k=1

h(i+ βk)
]
Cn,y(t1, ..., tr, i+ α1..., i+ αn−r−1),

(6)
where 1 ≤ r ≤ n− 2.

If we take n = 4 into Eq. (6) we obtain the following equation:

q∑
j=0

h(j)h(j + t1)h(j + t2)C4,y(β1, β2, j + α1)

=
q∑

i=0

h(i)h(i+ β1)h(i+ β2)C4,y(t1, t2, i+ α1)
(7)

III. SAFI, et al. ALGORITHM : ALGcum1

The Fourier transform of Eqs. (4) and (5) gives us the
bispectra and the spectrum respectively [5]:

S3,y(ω1, ω2) = ξ3,xH(−ω1 − ω2)H(ω1)H(ω2) (8)

S2,y(ω) = ξ2,xH(−ω)H(ω) (9)

If we suppose that ω = ω1 + ω2, Eq. (9) becomes:

S2,y(ω1 + ω2) = ξ2,xH(−ω1 − ω2)H(ω1 + ω2) (10)

Then, from Eqs. (8) and (10) we obtain the following equation:

S3,y(ω1, ω2)H(ω1 + ω2) = µH(ω1)H(ω2)S2,y(ω1 + ω2),
(11)

with µ =
ξ3,x
ξ2,x

The inverse Fourier transform of Eq. (11) demonstrates that
the 3rd order cumulants, the autocorrelation function and the
impulse response channel parameters are combined by the
following equation [5]:

q∑
i=0

C3,y(t1−i, t2−i)h(i) = µ

q∑
i=0

h(i)h(t2−t1+i)C2,y(t1−i)

(12)
If we use the autocorrelation function property of the station-
ary process such as C2,y(t) ̸= 0 only for −q ≤ t ≤ q and
vanishes elsewhere if we take t1 = −q, Eq. (12) takes the
forme [5]:

q∑
i=0

C3,y(−q−i, t2−i)h(i) = µh(0)h(t2+q)C2,y(−q), (13)

else, if we suppose that t2 = −q, Eq. (13) will become:

C3,y(−q,−q)h(q) = µh(0)C2,y(−q) (14)

Using Eqs. (13) and (14) we obtain the following relation [5]:
q∑

i=0

C3,y(−q − i, t2 − i)h(i) = C3,y(−q,−q)h(t2 + q) (15)

The system of Eq. (15) can be written in matrix form as:
C3,y(−q − 1,−q − 1) ... C3,y(−2q,−2q)
C3,y(−q − 1,−q)− θ ... C3,y(−2q,−2q + 1)

. . .

. . .

. . .
C3,y(−q − 1,−1) ... C3,y(−2q,−q)− θ



×



h(1)
.
.
.

h(i)
.
.
.

h(q)


=



0
−C3,y(−q,−q + 1)

.

.

.

.

.
−C3,y(−q, 0)


, (16)

where θ = C3,y(−q,−q).
Or in more compact form, the Eq. (16) can be written as
follows:

Mhq = d, (17)

where M is the matrix of size (q+1)× (q) elements, hq is a
column vector constituted by the unknown impulse response
parameters h(k) for k = 1, ..., q and d is a column vector of
size (q + 1) as indicated in the Eq. (17).
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The least squares solution of the system of Eq. (17), permits
blindly identification of the parameters h(k) and without any
information of the input selective channel. Thus, the solution
will be written under the following form:

ĥq = (MTM)−1MT d (18)

IV. ANTARI, et al. ALGORITHM : ALGcum2

Antari, et al. [9] demonstrates that the coefficients h(k) for
an finite impulse response system can be obtained by the Eq.
(12), if we take t2−t1 = q and the considered system is causal.
The following equation describes (ALGcum2) algorithm:

q∑
i=0

C3,y(t1−i, t1+q−i)h(i) =
ξ3,x
ξ2,x

h(0)h(q)C2,y(t1), (19)

where t1 = −q, ..., q the Eq. (19) can be written as follows:

Mhe = d, (20)

where M is the matrix of size (2q+1)×(q+1) elements, he is
a column vector constituted by the unknown impulse response
parameters h(k) : k = 0, ..., q and d is a column vector of size
(2q+1) as indicated in the Eq. (20). The least squares solution
of the system of Eq. (20), will be written under the following
form:

ĥe = (MTM)−1MT d (21)

V. ABDERRAHIM, et al. ALGORITHM : ALGcum3

Abderrahim, et al. [10] use the relationship (7), based on
fourth order cumulants, with β1 = β2 = 0, t1 = q and t2 = 0.
This algorithm is given by the following relation:

q∑
i=0

h3(i)C4,y(q, 0, i+α1)−h(q)C4,y(0, 0, α1) = −C4,y(q, 0, α1),

(22)
where α1 = −q, ..., q. In more compact form, the system of
Eq. (22) can be written in the following form:

Mθ = A (23)

θ = [h(q) h3(1) h3(2)....h3(q)]T is a column vector of
size (q + 1);
A = [0...0 −C4y(q, 0, 0) −C4y(q, 0, 1)....−C4y(q, 0, q)]

T

is a vector of size (2q + 1);
The least squares solution of the system of Eq. (23), will be
written under the following form:

θ̂ = (MTM)−1MT d (24)

The parameters h(i) for k = 1, ..., q are estimated from the
estimated values θ̂(i) using the following equation:

ĥ(i) =
3

√
θ̂(i+ 1) (25)

VI. ADAPTIVE ALGORITHMS

A. Description of the LMS Algorithm

From the method of steepest descent, the weight vector
equation is given by [20]:

Ĥn+1 = Ĥn − 1

2
µ∇ε(H)|Ĥn

, (26)

with e(n) = r(n) − XT (n)H , ε = E[|e(n)|2] and H =
[h(0), h(1), ..., h(q)]T . µ is the step-size parameter and con-
trols the convergence characteristics of the LMS algorithm
including between 0 and 1.
The gradient vector in the above weight update equation can
be computed as:

∇ε(H)|Ĥn
≈ ∇|e(n)|2 =

∂|e(n)|2

∂H
|Ĥn

(27)

∇|e(n)|2 = −2e(n)X(n) (28)

The LMS algorithm is initiated with an arbitrary value h(0)
for the weight vector at n = 0. The successive corrections of
the weight vector eventually leads to the minimum value of
the mean squared error. Therefore the LMS algorithm can be
summarized in the following equations:

Ĥ(n+ 1) = Ĥ(n) + µê(n)X(n), (29)

with
ê(n) = r(n)− ĤnX

T (n) (30)

B. Description of the RLS Algorithm

The RLS algorithm [12] is discribed by the following
equations (with initial conditions Ĥ(0) = 0).
Q−1(0) = δ−1I , δ is a small positive constant value.

k(n) =
λ−1Q−1(n− 1)X(n)

1 + λ−1XT (n)Q−1(n− 1)X(n)
, (31)

e(n) = r(n)−XT (n)Ĥ(n− 1), (32)

Ĥ(n) = Ĥ(n− 1) + k(n)e(n), (33)

Q−1(n) = λ−1Q−1(n− 1)− λ−1k(n)XT (n)Q−1(n− 1).
(34)

VII. SIMULATION RESULTS
To verify the performance of these algorithms, we have

applied a Macchi channel model. To measure the strength of
noise, we define the signal to noise ratio (SNR) as:

SNR = 10log
[σ2

y(k)

σ2
n(k)

]
(35)

To measure the accuracy of parameter estimation with respect
to the real values, we define the mean square error (MSE)
for each run as

MSE =
1

q

q∑
i=0

[h(i)− ĥ(i)

h(i)

]2
, (36)
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where ĥ(i), i = 1, ..., q are the estimated parameters in each
run, and h(i), i = 1, ..., q are the real parameters in the model.

1) Macchi channel: The Macchi channel is defined by the
following equation:

y(k) = 0.8264x(k)− 0.1653x(k − 1) + 0.8512x(k − 2)
+0.1636x(k − 3) + 0.8100x(k − 4),

zeros: z1=0.5500 + 0.9526j;z2=0.5500− 0.9526j;
z3=−0.4500 + 0.7794j;z4=−0.4500− 0.7794j.

(37)
The Macchi channel is a non minimum phase because two of
its zeros are outside of the unit circle.
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Fig. 2. The zeros of Macchi channel

2) Impulse response parameters estimation: The results of
simulation are shown in the Table I for different values of
sample sizes and for SNR=8 dB.
For all sample sizes and for a SNR=8 dB, the values, of mean
square error (MSE), of the (ALGcum1), LMS and RLS
algorithms are small than those obtained by the (ALGcum2)
and (ALGcum3) algorithms, this implies the true parameters
are near the estimates parameters.
The Fig. 3 give us a good idea about the precision of these
algorithms.
In the Table II we well present the impulse response param-

eters estimation of the Macchi’s channel for different SNR
and data length N = 2048.
From the Table II we can conclude that: the RLS, LMS and
(ALGcum1) algorithms are more effective than (ALGcum2)
and (ALGcum3) algorithms in noisy environment, with an
advantage of the RLS algorithm in terms of MSE. But the
results given by the algorithms based on higher order cumu-
lants, are blindly without any information about the input,
comparing to adaptive algorithms exploiting the information
of input and output for the estimation of the impulse response
channel. For that the adaptive methods send occasionally a
training sequence known to the transmitter and receiver.
The Fig. 4 give us a good idea about the precision of these
algorithms for different SNR.

3) Magnitude and phase estimation: In the following figure
(Fig. 5) we have presented the estimation of the magnitude and
phase of the impulse response channel using the presented
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Fig. 3. Comparison of algorithms for Macchi channel for SNR=8 dB
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Fig. 4. Comparison of algorithms for Macchi channel for N = 2048

algorithms for N = 2048 and SNR=8 dB.
From the Fig. 5 we observe that the estimated magnitude and
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Fig. 5. Estimated magnitude and phase of the Macchi channel impulse
response, for different algorithms, N = 2048 and SNR =8 dB.
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TABLE I
Estimated parameters of Macchi channel model excited by different sample sizes and for SNR =8 dB

N ĥ(i)±σ ALGcum1 LMS ALGcum2 ALGcum3 RLS

ĥ(1)±σ 0.7896±0.1338 0.8456±0.0629 0.5607±0.2748 0.5101±0.5314 0.8114±0.0070

ĥ(2)±σ −0.0559±0.2056 −0.2734±0.1140 −0.4244±0.1628 0.2557±0.4035 −0.1588±0.0071

1024 ĥ(3)±σ 0.7857±0.1099 0.8075±0.0874 0.5550±0.3079 0.5790±0.6220 0.8536±0.0060

ĥ(4)±σ 0.1892±0.1053 0.1886±0.0901 0.0302±0.1063 −0.1049±0.5160 0.1759±0.0079

ĥ(5)±σ 0.6740±0.1408 0.6982±0.1735 0.8061±0.2618 0.4907±0.9437 0.8076±0.0069
MSE 0.0831 0.0946 0.5577 1.5976 0.0015

ĥ(1)±σ 0.8797±0.1168 0.8233±0.0662 0.5137±0.1847 0.6921±0.3818 0.8351±0.0048

ĥ(2)±σ −0.1506±0.1482 −0.2039±0.0512 −0.3257±0.0969 0.2236±0.3769 −0.1643±0.0042

2048 ĥ(3)±σ 0.8154±0.1087 0.8306±0.0510 0.6500±0.2366 0.7497±0.4089 0.8565±0.0067

ĥ(4)±σ 0.2161±0.0830 0.1290±0.0557 0.0642±0.1143 0.1903±0.4751 0.1737±0.0054

ĥ(5)±σ 0.7499±0.1224 0.7181±0.0506 0.5890±0.2197 0.5895±0.4283 0.7905±0.0063

MSE 0.0204 0.0226 0.2641 0.9459 9.1098 × 10−4

ĥ(1)±σ 0.7871±0.0805 0.8185±0.0297 0.5806±0.1338 0.7450±0.1372 0.8287±0.0050

ĥ(2)±σ −0.1977±0.1038 −0.1198±0.0236 −0.2438±0.0730 0.0105±0.3597 −0.1625±0.0041

4096 ĥ(3)±σ 0.8552±0.0740 0.8569±0.0277 0.6203±0.1822 0.7980±0.1381 0.8526±0.0041

ĥ(4)±σ 0.1281±0.0526 0.1601±0.0304 0.1821±0.1147 0.0299±0.5077 0.1681±0.0050

ĥ(5)±σ 0.8335±0.0877 0.8568±0.0296 0.6233±0.1701 0.5475±0.2014 0.8106±0.0043

MSE 0.0148 0.0159 0.0756 0.3197 2.0973 × 10−4

True parameters h(i) h(1) = 0.8264 h(2) = −0.1653 h(3) = 0.8512 h(4) = 0.1636 h(5) = 0.8100

TABLE II
Estimated parameters of Macchi channel model for different SNR and excited by sample sizes N = 2048

SNR ĥ(i)±σ ALGcum1 LMS ALGcum2 ALGcum3 RLS

ĥ(1)±σ 0.8528±0.1256 0.8309±0.0540 −0.1310±0.9704 −0.0146±0.5764 0.8446±0.0127

ĥ(2)±σ −0.1157±0.1140 −0.2864±0.0839 −0.1543±0.5630 0.0316±0.4848 −0.1660±0.0148

0 dB ĥ(3)±σ 0.7554±0.1463 0.8615±0.0602 0.1448±0.8429 0.2827±0.6526 0.8624±0.0152

ĥ(4)±σ 0.2935±0.0777 0.0700±0.0455 −0.1602±0.2333 −0.1418±0.4816 0.1882±0.0147

ĥ(5)±σ 0.7634±0.1416 0.6345±0.0537 0.3275±0.6321 0.2376±0.5866 0.7607±0.0125
MSE 0.1229 0.1823 1.0514 1.1477 0.0054

ĥ(1)±σ 0.8752±0.1081 0.8294±0.0167 0.5806±0.1957 0.7387±0.1427 0.8317±0.0037

ĥ(2)±σ −0.1938±0.1234 −0.1940±0.0128 −0.3110±0.1091 0.0957±0.3542 −0.1656±0.0036

12 dB ĥ(3)±σ 0.8311±0.1096 0.8412±0.0147 0.6797±0.1813 0.8193±0.1271 0.8548±0.0044

ĥ(4)±σ 0.1942±0.0583 0.1363±0.0115 0.1062±0.1204 −0.0655±0.5145 0.1687±0.0048

ĥ(5)±σ 0.7810±0.1101 0.7721±0.0159 0.6071±0.1848 0.5510±0.2510 0.7975±0.0036

MSE 0.0117 0.0121 0.1819 0.7615 2.5485 × 10−4

ĥ(1)±σ 0.8534±0.0920 0.8256±0.0037 0.7273±0.1873 0.8027±0.1540 0.8277±0.0008

ĥ(2)±σ −0.1814±0.1497 −0.1703±0.0038 −0.2460±0.0979 0.0862±0.4024 −0.1654±0.0011

24 dB ĥ(3)±σ 0.8767±0.0989 0.8517±0.0047 0.8098±0.1859 0.8242±0.1691 0.8519±0.0008

ĥ(4)±σ 0.1400±0.0942 0.1572±0.0039 0.1914±0.1294 0.0515±0.5461 0.1649±0.0008

ĥ(5)±σ 0.8486±0.1029 0.7994±0.0038 0.7681±0.2359 0.6482±0.3391 0.8067±0.0009

MSE 58 × 10−4 5.1989 × 10−4 0.0478 0.4710 1.7192 × 10−5

ĥ(1)±σ 0.8564±0.0982 0.8267±0.0012 0.7103±0.1974 0.8383±0.1537 0.8268±0.0002

ĥ(2)±σ −0.1728±0.1327 −0.1667±0.0008 −0.2233±0.0886 −0.0428±0.3878 −0.1653±0.0003

36 dB ĥ(3)±σ 0.8887±0.0986 0.8509±0.0010 0.7805±0.2284 0.8728±0.1253 0.8514±0.0003

ĥ(4)±σ 0.1552±0.0733 0.1620±0.0009 0.1872±0.1490 0.2287±0.5115 0.1640±0.0002

ĥ(5)±σ 0.8940±0.0958 0.8079±0.0009 0.7859±0.2864 0.7197±0.3714 0.8092±0.0002

MSE 31 × 10−4 3.5059 × 10−5 0.0286 0.1201 1.3921 × 10−6

True parameters h(i) h(1) = 0.8264 h(2) = −0.1653 h(3) = 0.8512 h(4) = 0.1636 h(5) = 0.8100

phase using (ALGcum1), LMS and RLS algorithms have
the same allure and we have not more difference between
the estimated and the true ones. The (ALGcum2) algorithm
is able to estimate the phase response, but we have more
difference between the magnitude estimated and the true ones,
of the Macchi channel. The results given by (ALGcum3)
algorithm are more different to the true ones.

VIII. CONCLUSION
In this paper, we have compared blind identification meth-

ods based on HOC, with the adaptive algorithms (RLS and
LMS), to identify the parameters of the impulse response

of the frequency selective channel such as the Macchi chan-
nel. The simulation results show the efficiency of the RLS,
LMS and (ALGcum1) algorithms, but the blind algorithm
present the advantage to estimate the impulse response of
the frequency selective channel blindly, comparing to adaptive
algorithms. The magnitude and phase of the impulse response
are estimated, using RLS, LMS and (ALGcum1) algorithms
with a very good precision in noisy environment, but the
(ALGcum2) and (ALGcum3) give us a significant difference
between the estimated and the true ones.
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