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Abstract—In this paper a no-reference image quality metric
designed for human lung CT scans is presented. The metric
can be used for several purposes, including the evaluation of
visual quality of CT scans or controlling enhancement processes.
The developed method is based on a modified SKFCM image
segmentation algorithm combined with the SSIM metric. A lung
phantom was constructed for validation purposes. Tests were
performed both with synthetic images, using the lung phantom
with added noise, and with real CT images. The presented
methods include simulations, quantitative studies and subjective
evaluation. Experimental results show that the metric values
reliably follow the visual image quality of CT.

Keywords—CT, fuzzy C-means, image quality metrics, low-
dose, lung phantom, noise modeling

I. INTRODUCTION

ONE of the motivations behind the construction of the is
to provide a tool for objective evaluation of the quality

of low-dose CT scans. As it is known, dose reduction lowers
the radiation exposure risks, but at the same time decreases
the image quality. Therefore a quality measurement method
can be relevant and useful, in this respect.

In X-ray computed tomography, the attenuation of the X-
ray photon beam of the human body follows the Beer–Lambert
law:

I = I0 exp

(
−
∫
L

µ

)
, (1)

where I0 is the source intensity of the beam, I is the observed
intensity, recorded by the CT scanner sensors, L represents
the beam path and µ is the linear attenuation coefficient
function of the body parts. The recorded sinogram can be
considered as a sampling of the Radon transform of µ. The
reconstruction of µ can be received by means of the so-called
filtered backprojection method. For details we refer the reader
to [3]. We note that µ depends on photon energy, therefore
normalized HU (Hounsfield Unit) values are commonly used.
Quantum noise and electric noise are present in the recording
process, and quantization noise arise during the reconstruction
due to discretization.

There are several existing methods for image quality mea-
surement, based on various approaches (see e.g. [6]). The
mainstream full-reference metrics are SSIM (structural sim-
ilarity index) [12] and VIF (visual information fidelity) [10].
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Unfortunately, they cannot be applied directly in case of CT
scans, because in general no high quality reference scans
exist. We remark that the SSIM metric has already been
applied [7] to compare low-dose reconstructions and original
CT scans, where the latter serve as reference images. The
existing no-reference metrics are relative in the sense that
while they may follow the decrease of the quality of the same
image, the metric values are incomparable for different images.
The proposed metric, presented in the following section is
based on the SSIM metric and on a modified version of
the SKFCM (spatially constrained kernelized fuzzy C-means)
image segmentation algorithm [13]. Besides the SSIM we also
studied the CNR (contrast-to-noise) and SNR (signal-to-noise)
metrics [2], which are often used in medical image processing.
It turned out that SSIM performs better. For instance, CNR
and SNR are very sensitive to the selection of the regions. On
the other hand SSIM is normalized, i.e. the metric values are
always within the interval [−1, 1].

The outline of this article is as follows. In Section II the
quality measurement method is described. Section III contains
an analytical study of the metric with the constructed lung
phantom and noise model. In Section IV the results on real
low-dose and normal lung CT images are presented.

II. METRIC CONSTRUCTION

The metric construction consist of three main steps: prepro-
cession, segmentation and quality measurement.

We start with a preprocessing step, since experiments
performed on real low-dose CT images show that the seg-
mentation technique detailed below is more effective if a
preliminary background removal and gamma correction is
applied. Here background refers to the region outside the
body. For background removal Gaussian and median filtering,
thresholding and region fill turned out to be appropriate.
Gamma correction was applied to regions with intensity below
−700 HU. Fig. 2 (a) shows the result of this step for test image
Fig. 1 (a).

We continue with the segmentation part. Human lung CT
images, using HU values as pixel intensities, have similar
structures and histograms (see Fig. 1). This happens because
different human bodies have similar tissue combinations. The
proposed segmentation method assigns pixels to tissue clusters
according to intensities, spatial distribution and tissue proper-
ties.

The SKFCM algorithm was used as starting model. SKFCM
is a derivation of the conventional FCM (fuzzy C-means) algo-
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Fig. 1: Low-dose CT images with their histograms, using fake
colors.

rithm, replacing the original Euclidean distance with a kernel-
induced distance, and adding a spatial penalty to the objective
function. SKFCM was originally developed for noisy medical
images in order to create homogeneous regions. The SKFCM
objective function for segmenting a pixelset x = (xk)

N
k=1 into

C clusters is:

Jm =
C∑
i=1

N∑
k=1

umik (1−K(xk, vi) + Pm,i,k) , (2)

where v = (vi)
C
i=1 are the cluster prototypes, U =

(uik)
C,N
i=1,k=1 ∈ [0, 1]C×N stands for the partition membership

matrix, satisfying:

∀k :

C∑
i=1

uik = 1, ∀i : 0 <
N∑

k=1

uik < N, (3)

K is a Gaussian RBF with standard deviance σ, and m >
1 determines the level of cluster fuzziness. Pm,i,k represents
the spatial penalty term in the neighborhood Nk of pixel xk,
within cluster vi:

Pm,i,k =
α

|Nk|
∑
r∈Nk

(1− uir)m , (4)

where the parameter α ∈ (0, 1) controls the penalty effect.
Then SKFCM can be considered as an optimization problem,
i.e. minimization of Jm under the constraints for U .

The standard SKFCM cannot be applied directly in case of
lung CT scans, because it generates the same homogeneity
level in all of the clusters. In case of lung CT scans, the
segmentation goal is to create homogeneous fat, muscle and in-
ternal organ regions, with a detailed lung region. The structure
of the lung tissue must be preserved since it is diagnostically
relevant. In order to achieve this goal, the spatial penalty

TABLE I: Cluster prototypes

Material Prototype (HU)
Air -1000
Lung -600
Fat -100
Muscle, internal organs 100
Bone 500

term Pm,i,k in the objective function had to be modified.
One of the problems with the original penalty term was the
constant window size. In the modified version, we specified
different window sizes for different clusters. In addition to that
a weighted summation is used inside the windows, allowing
different homogeneity levels in the clusters. Then the modified
spatial penalty is:

Pm,i,k = α
∑

r∈Nik

wir(1− uir)m, (5)

where Nik stands for the neighborhood of pixel xk within
cluster vi, and wik are the weighted coefficients satisfying:

∀i :
∑

r∈Nik

wik = 1, xk /∈ Nik. (6)

Another important modification was the use of fixed cluster
prototypes. In the original SKFCM the number of clusters is
fixed, but the cluster prototypes are allowed to change during
the iterative optimization. In case of lung CT scans, fixed
cluster prototypes give a reliable and comparable segmentation
result. Table I contains the selected clusters and prototypes.

Similarly to the standard SKFCM the objective function Jm
can be minimized by the following iteration scheme. Initialize
U with:

u
(0)
ik =

(1−K(xk, vi))
−1/(m−1)

C∑
j=1

(1−K(xk, vj))
−1/(m−1)

, (7)

and in each iteration step update U with:

u
(t+1)
ik =

(
1−K(xk, vi) + P

(t)
m,i,k

)−1/(m−1)
C∑

j=1

(
1−K(xk, vj) + P

(t)
m,j,k

)−1/(m−1) . (8)

(a) (b)

Fig. 2: The result of preprocessing and segmentation.

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 5, No. 1 (2016)

2



As a consequence of noise, overfitting may happen. In order
to avoid it, early stopping is necessary. The iteration stops,
when one of the following criteria are met.
• The iteration reaches tmax = 10 steps,
• E(t) =

∥∥U (t) − U (t−1)
∥∥
∞ error satisfies E(t) < ε,

• E(t) > βE(t−1), where β ∈ (0, 1) is a fixed constant.
The last criterion prevents overfitting. Namely, if the decrease
of E(t) is under a desirable speed, the iteration stops.

The parameters were optimized by means of tests performed
on real CT images. The result is as follows: m = 2, α = 0.3,
β = 0.75, tmax = 10. The dimension of the window Nik is
3 × 3 in case of air and lung clusters, and the weights are
generated from the Gaussian filter with standard deviance 0.5.
For other clusters the window size is 9 × 9, and the weights
come from the Gaussian filter with standard deviance 1.5.
Experimental results show, that the iteration works better if the
standard deviance of Gaussian RBF K is proportional to the
image noise level. Noise level was roughly estimated by using
wavelet transform and calculating the standard deviation of the
detail component, which mostly contains noise. The result of
segmentation applied to test image Fig. 1 (a) is shown on
Fig. 2 (b).

In the final step, we employ the full-reference SSIM metric
to the result of segmentation and the starting preprocessed
image. Here the result of segmentation serves as reference
image. The metric value lies within the interval [−1, 1], where
higher value means better quality. The performed tests using
both synthetic and real CT images show that it complies with
the visual quality of the CT scans.

III. PHANTOM STUDY

We constructed a lung phantom for testing and validating
the developed metric. This phantom serves as an analytical
and schematic model of the lung. We used the lung phantom
and noise model to generate synthetic images with different
noise levels. They served as test cases for the segmentation
and quality measurement method.

During the construction of the lung phantom we followed
the principles of the Shepp–Logan head phantom [11], which
is the most popular analytical phantom. The tissues are rep-
resented by means of elliptical regions, therefore the Radon
transform of the phantom can be calculated directly [9], and
the synthetic sinogram can be obtained in an analytical form.
The lung phantom, as shown on Fig. 3, consists of 6 big and
200 small ellipses. Big ellipses represent fat, muscle and bone

Fig. 3: Lung phantom.

tissues, small ones the lung tissue. Small ellipses have random
sizes, placed randomly inside the lung area, 100-100 on each
side. Prototypes of Table I shows the ellipse intensities. The
exact phantom specification is given in Appendix A.

We used the noise model for digital sensors given in [4].
It includes both quantum noise and electric noise. This model
can be applied to CT scanner sensors, as well. The model
describes the electric noise as a signal-independent Gaussian
random variable with expected value 0 and fixed variance,
and the quantum noise as a signal-dependent Poissonian
random variable. Approximating the Poisson distribution with
Gaussian distribution, the noise model is:

Inoise = I + η(I), η(I) ∼ N (0, aI + b) , (9)

where I is as in (1), Inoise stands for the detected, noisy
intensity. The positive parameters a and b control the effect of
the quantum and electric noise, respectively. Similar equation,
with modified a and b parameters, can be given for the quotient
of the source and the observed intensities:

Inoise
I0

=
I

I0
+ η

(
I

I0

)
, η

(
I

I0

)
∼ N

(
0, a

I

I0
+ b

)
, (10)

where I0 stand for the source intensity.
CT screening process was simulated by using the lung phan-

tom and the noise model above. The simulation parameters
were chosen to imitate the settings of the real CT scans.
Namely, photon beam energy is set to 57 KeV, with the
corresponding value µH2O ≈ 0.2 cm−1 (see [5]). The output
resolution is 512 × 512 pixels, pixel distance is chosen to
0.06 cm. Simulation starts with generating a synthetic sino-
gram by sampling the analytical Radon transform of the lung
phantom. Generated noise can be added after converting the
sinogram to intensity quotients. Then, reversing this method
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Fig. 4: Synthetic lung phantom scans with different noise
levels.
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Fig. 5: Dependence of the metric values on parameter a with
three fixed values of parameter b: 5 ·10−8 (blue), 10−7 (green)
and 2 · 10−7 (red).

a noisy phantom scan can be reconstructed. In the following
examples filtered backprojection with Ram–Lak filter was used
as reconstruction algorithm. With given direction L and Radon
transform P (L) the intensity quotient is:

I

I0
= exp (−0.2 · 0.06 · P (L)) . (11)

Adding noise to I/I0, with Inoise/I0 the noisy Pnoise(L)
Radon transform will be:

Pnoise(L) = −
1

0.2 · 0.06
· ln
(
Inoise
I0

)
. (12)

Fig. 4 contains two synthetic lung phantom reconstruc-
tions with their histograms. The images are generated with
parameters b = 10−7, a = 6 · 10−5 and a = 3 · 10−4,
respectively. The synthetic and the real CT images have similar
visual appearance and histogram structure (compare Fig. 4
to Fig. 1). The noise appears a similar way, similar artifacts
can be observed (e.g. beam hardening). This shows that the
lung phantom can be used as a schematic model for a two-
dimensional slice of a human lung CT scan.

We can deduce from the experimental results on synthetic
scans that the segmentation process preserves the structure of
the images and the metric value reliably follows the image
quality. In Fig. 5 a quantitative study of the metric and the lung
phantom is demonstrated, with different a and b parameter
values. The diagram shows the dependence of the metric
values on parameter a with three fixed values of parameter
b. Blue bars belong to b = 5 · 10−8, green bars to b = 10−7,
red bars to b = 2·10−7. Each value is calculated as an average
of 20 measurements. We can conclude that with fixed level of
electric noise, the metric values follow the change of quantum
noise level.

IV. REAL CT TESTS

Experimental results on real CT scans show that the pro-
posed segmentation preserves the structure of the images, and
the given metric value is a reliable characterization of image
quality. We compared multiple datasets, compared the metric
to existing methods, performed quantitative study based on the
patient size and made comparison to subjective evaluations.

A. Datasets

This study is primarily based on 20 low-dose lung CT scans
from Pozitron-Diagnostics Health Centre, Budapest, Hungary.

These scans were recorded with Siemens Somatom scanner
using the same settings, namely photon beam energy is 57
KeV, tube current is 30 mAs with 130 kVp. Each scan consist
of 231 to 298 slices, the resolution of a slice is 512×512, the
pixel distance is between 0.0576 and 0.0744. Beside that, test
were performed on two additional datasets: 50 low-dose lung
scans from public database ELCAP [8], and 20 normal-dose
lung scans from public database LIDC-IDRI [1].

Considering the scans of Pozitron-Diagnostics Health Cen-
tre, the metric values lie between 0.61676 and 0.85809. Fig. 14
gives a comparison of metric values with 8 images from
the dataset. Tests on the scans from database ELCAP give
similar results. Namely, metric values are between 0.65505 and
0.85857. The similarity of the results is reasonable, because
the two low-dose dataset contain visually similar CT images.
Segmentation gives a better result on normal-dose scans from
database LIDC-IDRI, comparing to low-dose scans. In this
case metric values lie in a higher range, between 0.82946 and
0.93688, as expected.

B. Comparison to CNR and SNR

We compared the CNR and SNR metrics to the proposed
metric. Here we remark that to calculate these metrics a
nearly homogeneous background and body region need to be
selected. Both metrics are very sensitive the way we select
that regions. We used a semi-automatic region selection based
on the segmentation but a per-image supervision was required.
Fig. 6 shows the selected ROI for a low-dose test image. There
is a strong relation between the metric values and the CNR
and SNR values, the Pearson linear correlation coefficient is
0.86 in both cases. Fig. 7 shows the CNR values against the
metric values.

Fig. 6: ROI used to calculate CNR and SNR, white rectangle
for background, black rectangle for body ROI.
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Fig. 7: Correlation between the metric values and the CNR
values.
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C. Quantitative study of the metric values

According to the properties of the CT screening, the patient
size affects the quality of the scan. During the scans of
larger patients the radiation dose is usually increased (i.e. by
increasing the tube current or lowering the kVp) to maintain
image quality. With fixed tube current and kVp, we can
expect worse image quality in case of larger patients. As
discussed before, the scans from Pozitron-Diagnostics Health
Centre have the same recording parameters, except the pixel
distance and the number of slices. These parameters are set
individually for each patients, according to the size of their
bodies. Consequently, in case of these CT scans, an image
quality metric should correlate with the patient size. The test
results show that the largest patients have the lowest metric
values (see Fig. 14). We studied this effect regarding to real
and synthetic images, as well.

Before a CT scan, the weight of the patient is measured,
this parameter is stored in the file headers. The weight can
be considered as a rough characterization of the patient size.
We compared the metric values to the weight parameters, the
Pearson linear correlation coefficient of 0.62 indicates a rela-
tion between these two properties. We note that heavy but tall
patients may have small thoracic region. A better description
should consider other properties as well, for instance the height
of the patients, but this parameter is not available. To give a
better characterization of the patient size, we measured the
body area on the selected slices. Using the segmentation, we
counted the pixels, which, according to their intensities, belong
to muscles, fat, internal organs or bones. Then we scaled this
area with the pixel distances. The Pearson linear correlation
coefficient between the measured area and the metric values is
−0.88, which indicates a strong relation. Fig. 8 presents this
relation, the metric values against the measured body area.

We simulated different patient sizes with the lung phantom.
At fixed level of noise, namely with noise parameter a =
6·10−5 and b = 10−8, we performed two simulations. First we
enlarged the phantom with fixed pixel distance, then with the
original phantom we generated synthetic images with different
pixel distances. We remark that the two simulations are similar,
the main difference is that in the first case the phantom is
cropped to the viewing area (see Fig. 9), while in the second
case, the viewing area is enlarged and the whole phantom
is visible (see Fig. 10). The generated synthetic images are
still similar to the real CT scans, and with larger phantom or
bigger pixel distance we can observe higher level of noise, as
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Fig. 8: Correlation between the metric values and the measured
body area.

(a) (b)

Fig. 9: Phantoms with pixel distance 0.055 cm and 0.07 cm.

(a) (b)

Fig. 10: Enlarged phantoms, with size multiplier 0.9 and 1.2.

expected. The metric values follow the size, the Pearson linear
correlation coefficients are nearly −1 in both cases. Fig. 11
and Fig. 12 show the metric values against pixel distances and
size, respectively. Each value is calculated as an average of 20
measurements.
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Fig. 11: Dependence of the metric values on the pixel dis-
tances.
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Fig. 12: Dependence of the metric values on the size multi-
pliers.
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jective MOS.

We can conclude that the proposed metric handles the
quality degradation caused by the patient size well.

D. Subjective quality evaluation

To interpret and discuss the measurement results, we trans-
formed the metric values into 1 to 5 scores. As mentioned
before, the SSIM values are always between −1 and 1, in
practical cases between 0 and 1. In our case the metric values
are above 0.6 for real CT images and above 0.7 for synthetic
images. Considering this, we transformed the [0.6, 1) interval
into 1 to 5 integer scores. In case of low-dose images the
lowest metric values is therefore 1, the highest is 4, the most
of the images get score 3. In case of normal-dose images, the
lowest score is 3, the highest is 5, the most of the images get
score 4.

Finally we provide comparison to subjective quality scores.
Two radiologist medical doctors associated with Pozitron-
Diagnostics Health Centre evaluated the 20 low-dose scans
the institute provided. They assigned scores between 1 and 4,
where 1 means the worst, 4 the best quality. We compared the
MOS (mean opinion score) of the two evaluations to the metric
values. The Pearson linear correlation coefficient between the
MOS and the metric values is 0.62 which indicates a relation
between them. Fig. 13 shows the MOS against the metric
values. Since the Pearson linear correlation coefficient between
the two different subjective evaluations is also 0.62, we can
conclude that, taking the uncertainties into consideration, the
proposed metric values describe the quality well according to
the subjective evaluations. We note that more reliable results
can be given with further evaluations including more scans
and more radiologist test subjects.

V. CONCLUSION

In this paper a no-reference image quality metric for hu-
man lung CT scans is presented. The metric construction is
based on segmentation, modifying and adjusting the SKFCM
algorithm. The modified objective function of SKFCM made
it possible to applying this method to lung CT images. Quality
measurement was performed with SSIM, comparing the result
of the segmentation with the preprocessed original image.
The metric was tested and validated with a constructed lung
phantom and real CT scans. Synthetic images were created
using the lung phantom and noise model, and real, low-dose

and normal lung CT scans were examined. We performed sim-
ulations, quantitative studies and subjective evaluation as well.
Experimental results in each cases show that the proposed
metric is a good estimation of image quality.

The results presented in this paper are preliminary and
further clinical evaluation is required.

The possible applications of the metric include measuring
and comparing image enhancement methods, optimizing the
parameters of the CT process or the settings of the CT scan-
ners. For instance, tube current and voltage may be optimized
based on the metric, achieving low radiation dose yet good
image quality, even in real time during the CT recording.

The method was developed especially for low-dose lung
CT scans, regarding the attributes of this images. However, if
the parameters of segmentation is adjusted properly, it seems
possible to use the metric with other type of CT images or
even with other type of medical images. This utilization needs
further research.

APPENDIX A
LUNG PHANTOM SPECIFICATION

X Y Major axis Minor axis Theta HU level
0 0 1.0 0.8 0◦ −100
0 0 0.85 0.65 0◦ 200

−0.35 0.05 0.3 0.5 −18◦ −1100
0.35 0.05 0.3 0.5 18◦ −1100
0 −0.45 0.15 0.15 0◦ 400
0 0.5 0.05 0.05 0◦ 400
. . . . . . . . . . . . 0◦ 400

The table above contains the exact specification of the lung
phantom: center coordinates (X and Y), axes, rotation angles
(Theta) and intensity levels in HU. The last row stands for
the 100-100 small ellipses inside of the third and fourth big
ellipses. These small ellipses are placed randomly, and have
random axes between 1/512 and 4/512.
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(a) 0.61676 (b) 0.68027 (c) 0.74211 (d) 0.78153

(e) 0.80194 (f) 0.82618 (g) 0.83875 (h) 0.85809

Fig. 14: Low-dose CT scans with different quality and the metric values. (Pozitron-Diagnostics Health Centre)
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