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Abstract—Empirical Mode Decomposition (EMD) is a data-
driven technique for extraction of oscillatory components from
data. Although it has been introduced over 15 years ago, its
mathematical foundations are still missing which also implies lack
of objective metrics for decomposed set evaluation. Currently, the
most common technique for assessing results of EMD is their
visual inspection, which is very subjective. This article provides
objective measures for validating EMD output, which are derived
from the original definition of oscillatory components. Three pro-
posed metrics refer to component’s idealised characteristics, i.e.
its significant instantaneous frequency and the ability to extract
amplitude- and frequency-modulated parts. Possible application
of these metrics is presented on two examples.
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I. INTRODUCTION

Empirical mode decomposition (EMD) has been proposed
recently by Huang et al. [1]. Over past 15 years the method
has gained worldwide recognition as a data-driven method
for extraction of physically meaningful oscillatory components
[2]–[4].

In the original paper on EMD [1] authors noted that small
perturbations to the input signal results in different outputs.
This is highly undesired effect, but unfortunately due to the
heuristic nature of the EMD it is impossible to determine
which set of intrinsic mode functions (IMFs) — the output of
the EMD — is better. There were many attempts to improve
the algorithm, for example ensemble empirical mode decom-
position [5]. It assumes that adding small fluctuations to the
input signal results in slight perturbation of the output around
true decomposition. Thus, creating large ensemble of signals
with added small noise will exhaust all possible perturbations
and result in large ensemble of decompositions with the mean
value being the true set. However, evaluations of this approach
indicate that obtained results most of the time do not resem-
ble oscillations and the problem of method being empirical
remains. Other attempts to improve EMD, e.g. [6]–[8], have
similar issues; there is no mathematical framework and all
manipulations are driven mainly with intuition. Nevertheless,
researchers usually can make, and do, assessments of method’s
performance based on their knowledge and experience. Few
authors ( [1], [9], [10]) have made attempts to formulate rules
based on which sets of IMFs should be chosen. All of them,
however, are based on the assumption that IMFs belong to
Hilbert’s L2 function space, which is not necessarily true. As
stated in [1] obtained orthogonality (in Hilbert sense) is purely
by coincidence and should not be expected from the method.
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The most popular validation method is based on a visual
inspection of the results [9], [11], [12]. This introduces the
artefact of subjective opinion into the process. Conclusions
from their research cannot be generalized, since they have
looked at different, often single, features of output. In this
article objective methods for validating the decomposed sets
are introduced. The proposals are based on the features that
IMF are expected to possess. Each variant focuses on a
different characteristics of the data.

The rest of the paper is organized as follows. Section
II introduces empirical mode decomposition. Section III de-
scribes proposed validating methods. Section IV describes
two conducted numerical experiments with conclusions in
section V.

II. EMPIRICAL MODE DECOMPOSITION

Empirical mode decomposition (EMD) is a data-driven
method for time-frequency analysis. It decomposes data into
components called intrinsic mode functions (IMFs). The al-
gorithm encapsulating performing EMD on signal S(t) is as
follows:

1) Assign trend as a difference between input signal and
sum of extracted components, i.e. r0(t) := S(t) −∑n
j=1 cj(t). If it is a first iteration, than r0(t) := S(t).

2) Identify all local extrema (both minima and maxima)
in time series ri(t), that is whenever the derivative is
dri(t)/dt = 0.

3) If the number of extrema is less or equal 2 then ri(t)
is considered as a trend — a low frequency modulation
— and the algorithm stops.

4) Calculate top (emax) and bottom (emin) envelopes by
interpolating respectively local maxima and local min-
ima with natural cubic splines.

5) Calculate the instantaneous mean of both envelopes
m(t) = 1

2 (emax(t) + emin(t)).
6) Subtract the mean from the input time series hi(t) =

ri(t) − mi(t). This step is called sifting, because it
removes trend from fast varying component.

7) If hi(t) fulfills the stopping criteria, then it is considered
to be an IMF (component cn(t) := hi(t)) and start again
from step 1 with updated set of components. Otherwise,
assigned residue as ri+1(t) := hi(t) and repeat from
step 2.

As a result, EMD decomposes signal S(t) into a set of N
oscillatory cj(t) components (IMFs) and a trend r(t) function.
Procedure to perform EMD is not uniquely defined. It depends
on interpolation technique used for spanning envelopes, defini-
tion of extrema, stopping criteria, etc. Different combinations
of those settings can produce different outputs even for the
same input data. This leads to an obvious question: which set
of settings does produce the most significant results?
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In the original article on the EMD [1], it was suggested to
apply the Hilbert transform (HT) to the obtained set of IMFs.
The HT converts a real-valued signal S(t) into an analytic
form A(t), which then can be decomposed into amplitude
and phase modulation parts [13]. Mathematically, it can be
presented as

A(t) = a(t) cos (φ(t)) , (1)

where functions a(t) and φ(t) are amplitude and phase,
respectively. Taking derivative of phase over time (φ̇) allows to
extract component’s instantaneous frequency. With this terms
average frequency can be defined as

Φ̇ =
1

T

∫ T

0

φ̇(t)dt, (2)

where T is the length of time over which the signal is
observed. A combination of EMD and HT on all components
is called Hilbert-Huang transformation.

III. PROPOSED VALIDATION METHODS

The main reason for method proposed in this paper is to
avoid the use of subjective judgment in evaluation of EMD
performance. This is achieved by relaying on the intrinsic
features reportedly possessed by the IMFs, or on those that
would help in the future analysis [1]. The main considered
characteristics are: 1) decrease of average frequency with
increase of IMFs index, 2) distinct instantaneous frequency
for each IMF and 3) disjoint Fourier spectra support for IMF’s
amplitude and phase.

In this section, IMFs are represented in polar form, i.e. time
series of the jth indexed IMF are assumed to have amplitude,
a, and phase, φ, modulations (IMFj(t) = aj(t) cos (φj(t)).
Although, all proposed metrics are designed for continuous
functions, in most cases, change to the discrete domain is a
straightforward operation. Such processing requires exchang-
ing integration operator over time period T into sum over all
data points P .

A. Validation method I

This metric is based on the empirical evidence for the
decrease of average instantaneous frequency, simply referred
to as the average frequency, with the increase of IMF’s index
number. Although the order with which the IMF components
are construced in general corresponds to the decreasing IMF
average frequencies, there are instances when the instanta-
neous frequencies cross over between the components. Since it
has been claimed that each IMF has a significant instantaneous
frequency [1], such behaviour is unwelcome and hence it
is penalised by this metric. Penalties are introduced when
instantaneous frequency of an IMF with lower number (high
average frequency) is smaller than instantaneous frequency of
any IMF with higher number. The penalty value is proportional
to the length of the crossing over effect, i.e.

mI
j =

N∑
k=j+1

∫
φ̇k>φ̇j

dt

T
(3)
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Fig. 1. Plot of instantaneous frequency for each IMF as a function of time.
Coloured regions indicates where the frequency crossing over occurs. Metric
MI penalises based on the length of those regions.

where k, j are IMFs’ indices. Formula (3) compares functions
of instantaneous frequencies of two IMFs and returns the total
duration, over which the IMF with higher index has lower
frequency. The crossing over effect has been presented in
Figure 1. It shows instantaneous frequency of each IMF as a
function of time. Coloured regions indicate where the crossing
over occurred. Summing over all pairs of IMFs allows us to
assess results for particular EMD. Metric value for the whole
set is given as

MI =

N∑
j=1

mI
j , MI ∈

[
0,
N(N − 1)

2

]
, (4)

According to this measure, the best IMF set is the one, for
which MI = 0, i.e. there are no crossing-over parts in instan-
taneous frequency domain. The worst case, MI = N(N−1)/2,
is when the order of all IMFs is reversed, i.e. when the first
IMF is under all others and the last IMF is above all others.
However, this theoretical upper limit is very unlikely and the
corresponding IMF set could be still considered upon index
reversal.

B. Validation method II

Another validating measure is based on the Bedrosian theo-
rem [14]. It refers to the necessary conditions for the signal’s
amplitude, a(t), and phase, φ(t), to be exactly recoverable
using Hilbert transformation. For signal s(t) = a(t) cos (φ(t))
these conditions require that the support of amplitude and
phase’s Fourier spectra are not overlapping. In other words, if
the amplitude function, f(t) = a(t), and the phase function,
g(t) = cos (φ(t)), then

〈F(f),F(g)〉 = 0, (5)

where F represents the Fourier transform and 〈h(t), l(t)〉 =∫
h∗(t)l(t)dt is the dot product. Here it is assumed, that all

functions belong to L2 normed space.
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Fig. 2. Example of comparing Fourier spectrum of the amplitude with the
spectrum of phase. Gray-striped area indicates where two functions overlap.

Let F aj = |F (aj(t))| and Fφj = |F (cos (φj(t)))| be
absolute values of Fourier transforms of aj and cos(φj), re-
spectively, for j IMF. Their normalised measure of overlapping
spectra is given as

mII
j =

〈
F aj , F

φ
j

〉
√
‖F aj ‖‖F

φ
j ‖
, (6)

where ‖h‖ = 〈h, h〉 is a norm of a function h. Assumptions
of Bedrosian’s theorem are completely fulfilled when spectra
are not overlapping, thus minimum value of mII

j is zero.
This allows for different definitions of a metric for the whole
IMF set, depending on application of EMD. First proposition
is based on a biggest value of overlap mj in considered
decomposition, i.e.

MII = max
j
{mII

j }, MII ∈ [0, 1], (7)

and the second refers to the cumulative overlap within the
decomposed set, i.e.

MIII =
N∑
j=1

mII
j , MIII ∈ [0, N ], (8)

where in both cases N is the number of extracted IMFs. Zero
for both metrics implies no overlap between amplitude’s and
phase’s spectra in any of IMFs.

Visual interpretation of the validation measure (6) is pre-
sented in Figure 2. It shows example Fourier spectra of slowly
changing amplitude (dashed line) and higher frequency phase
(solid line). Gray-striped region indicates overlapping area of
both spectra. Proposed value is a measure of ratio of the
overlapping area to the total area under both functions.

Since metric MIII is a sum over all IMFs, it also contains
the one which maximizes value mII

j (Eq. (6)). This means that
MIII for each decomposition has to be at least equal or higher
than MII.

C. Application of the validation measures

Each of the presented metrics highlights different properties
of the decomposition. Computing all three values is equivalent
to finding a point M = (MI,MII,MIII) in a 3-dimensional
space, where each dimension relates to the specific metric.
The best decomposition corresponds to the minimum over all
the metrics, i.e. M = (0, 0, 0), and the worst decomposition to
M = (N(N−1)

2 , 1, N). For any other point one has to decide
on the importance, or weight, for each of the proposed metrics,
on the basis of the problem being considered. Although the
distance in the M -space is not strictly defined, it can be any Lp

norm, thus we suggest using the weighted Manhattah metric,
i.e.

‖M‖ = w1MI + w2MII + w3MIII, (9)

where wi are respective weights. Their values should reflect
the relative importance of features one is concentrated on.

IV. EXPERIMENT

Measures proposed in section III quantify characteristics of
well behaved IMFs. The smaller those metrics are, the better
the IMF decomposition set represents the desired properties
of the EMD-based decomposition.

One could also extend the EMD method into an optimiza-
tion problem for any parameter, where cost is defined by
Mi measures. In the following examples, optimization was
performed to choose the best value of a parameter FIXE H
for an input signal. The parameter FIXE H indicates when to
stop sifting procedure; it refers to the number of consecutive
iterations of sifting for which the residue fulfils definition of
an IMF. EMD was performed for each value of the parameter
and the decomposition which minimized its value was chosen
as the best.

For illustration two experiments were conducted. First one is
performed on synthetic signal constructed of four sinusoidal
components and the second on filtered Gaussian noise. All
signals utilized in the following experiments, were generated
with a single floating point precision. As it was shown in
[15], in most cases this does not influence quality of the
decomposition, but can increase the performance. Boundary
effect introduced by using Hilbert transform was removed by
symmetrically truncating the signal to 80% of the original,
i.e. removing initial and final 10% of samples. Additionally,
the signal was smoothed by adding mean of each sample’s
neighbours.

A. Experiment 1

First experiment was conducted on a synthetic signal com-
posed of harmonic components. The test signal was generated
according to the following formula

S1(t) =
5∑
j=1

Aj sin(2πfjt+ φj) +N (0, 0.1), (10)

where values for the amplitude (Aj), the frequency (fj) and
the phase shift (φj) are included in Table I. The values of
these parameters were selected at random, with constrains
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Fig. 3. Test signal S1(t) used in experiment with synthetic data, generated
according to Eq. (10).

that amplitude had to be an integer smaller than 5 and that
minimum distance between frequencies was 4. Moreover, in
equation (10) the symbol N (µ, σ) denotes noise in the form of
the normal distribution with a mean µ and a variance σ2. The
graphical representation of the signal can be seen in Fig. 3.

The experiment was conducted as follows:
1) Generate test signal S1(t).
2) Set value range of the parameter – FIXE H spanning

from 0 to 20.
3) For each value FIXE H, decompose the signal with

EMD and calculate all metrics (MI,MII and MIII).
4) The best decomposition set is the one with the smallest

sum of all metrics M = MI + MII + MIII (all weights
equal).

TABLE I
PARAMETERS FOR AMPLITUDE (Aj ), FREQUENCY (fj ) AND PHASE SHIFT

(φj ) OF EQUATION 10.

j Aj fj φj
1 1 35 2.0
2 1 25 4.0
3 3 19 0.0
4 2 15 3.4
5 3 4 5.7

The signal was decomposed 20 times with the EMD under
different stopping criteria conditions, i.e. FIXE H ranged
from 1 to 20. All validating metrics, computed for each
decomposition, are presented in the Table II. Decomposition
sets are assessed based on a sum total of all metric values for
a parameter. The best set is the one with the smallest sum;
likewise the worst set is one with the largest value.

For the provided signal, the best decomposition was ob-
tained with the parameter FIXE H = 17. The figure 4 shows
all components. Likewise, the worst decomposition set is
obtained for FIXE H = 1 (Fig. 5). Although these results
appear similar, especially when comparing the first IMFs
of both decompositions, there are few differences between
obtained sets. Main difference is in the number of produced
components. The set with higher value of metric M has one
additional IMF. It might not be obvious at which stage it
was added, but there seems to be more components with low
number of extrema. Moreover, the difference is also clear when
analysing position and amplitude of extrema. Comparing sec-
ond and third IMFs one can see that in the best decomposition

Time [s]

Fig. 4. The best EMD decomposition set, i.e. producing the smallest metric
M value, for given range of FIXE H parameters. Decomposition obtained
from signal S1(t).

position of local extrema are relatively evenly spaced. The
same observation holds for the amplitude of extrema — there
is a clear stable modulation in the amplitude. In contrast, the
worst decomposition has less visible structure, even though it
also contains an apparent repeating pattern.

TABLE II
METRIC VALUES OBTAINED BY PERFORMING THE EMD ON S1(t) WITH

VARYING VALUE OF FIXE H PARAMETER.

FIXE H MI MII MIII MI +MII +MIII
1 1.17 0.63 0.87 2.66
2 1.13 0.57 0.77 2.47
3 1.33 0.48 0.53 2.27
4 1.17 0.61 0.88 2.65
5 0.91 0.22 0.51 1.64
6 0.92 0.22 0.51 1.65
7 0.93 0.22 0.50 1.64
8 1.15 0.35 0.69 2.19
9 1.12 0.32 0.66 2.10
10 1.12 0.35 0.72 2.19
11 1.18 0.30 0.54 2.02
12 1.20 0.29 0.54 2.03
13 0.98 0.14 0.31 1.44
14 0.98 0.16 0.32 1.45
15 0.96 0.16 0.31 1.43
16 0.97 0.16 0.32 1.45
17 0.96 0.16 0.30 1.42
18 1.44 0.48 0.64 2.56
19 1.45 0.36 0.50 2.32
20 1.56 0.27 0.45 2.24

B. Experiment 2

For this experiment signal was generated using Gaussian
noise with mean value 0 and standard deviation 1

S2(t) = N (0, 1). (11)

As it has been suggested in [10], in order to obtain meaningful
decomposition it is necessary to have ratio of signal’s sampling
frequency, fs, to the highest Fourier frequency, ff , of at
least 10 (fs/ff ≥ 10). This means that when sampling with
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Fig. 5. The worst EMD decomposition set, i.e. producing the biggest metric
M value, for given range of FIXE H parameters. Decomposition obtained
from signal S1(t).

frequency 500 Hz, signal has to be low-pass filtered with the
cut off frequency of 50 Hz. For the experiment, we used the
zero-phase Butterworth low-pass filter of order 4. The resulting
signal is visualised in Figure 6.

The experiment was conducted similarly to the Experiment
I, with the difference in weights used to calculate the metric.
The exact steps of execution were:

1) Generate the test signal, S2(t).
2) Set the value range of the parameter – FIXE H spanning

from 1 to 20.
3) For each value FIXE H, decompose the signal with the

EMD and calculate all metrics (MI,MII and MIII).
4) The best decomposition set is the one with the smallest

sum of all metrics M = 2 ·MI +MII + 0.5 ·MIII.
Such a choice of weights puts more emphasis on selecting

IMFs with more mutually separate instantaneous frequencies.
It also increases significance of the component with the most
overlapping amplitude and phase Fourier spectra; the sum of
all measuring values (Eq. (6)) has lower priority. Overall,
the metric, M , is meant to select a decomposition with the
most distinct frequencies. This effect should be visible when
analysing location of extrema, as they should be spaced more
evenly.

All calculated values of metrics are presented in the Table
III. The last column contains a weighted sum of all other
metrics for each value of the parameter FIXE H. The smallest
and the largest values are obtained for FIXE H equal to 2
and 12, respectively. The best decomposition can be seen in
the Figure 7, whereas the worst in the Figure 8. Comparing
the two decompositions one can see the difference in the
number of IMFs — two more in the worst EMD set. In this
case, two first IMFs seem to be similar, or at least without
any obvious differences. Analysing position and value of the
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Fig. 6. Test signal S2(t) used in experiment with filtered Gaussian noise
generated.

third component’s extrema, one can see that there are more
extrema for FIXE H = 12. Additionally, IMF 6 from the worst
decomposition does not seem to have any close counterpart in
the best decomposition. Its small amplitude suggests that the
component might be hidden within amplitude modulation of
any other IMF.

TABLE III
METRIC VALUES OBTAINED BY PERFORMING THE EMD ON S2(t) WITH

VARYING VALUE OF FIXE H PARAMETER.

FIXE H MI MII MIII 2MI +MII + 0.5MIII
1 1.64 0.60 0.84 4.30
2 1.62 0.59 0.70 4.18
3 1.78 0.58 0.85 4.56
4 2.17 0.56 0.67 5.23
5 2.27 0.53 0.82 5.48
6 2.17 0.45 0.69 5.14
7 2.25 0.47 0.79 5.37
8 2.07 0.57 0.89 5.15
9 2.21 0.53 1.04 5.47
10 2.20 0.55 0.86 5.38
11 2.25 0.55 0.87 5.48
12 2.58 0.60 1.04 6.28
13 2.56 0.60 1.00 6.22
14 2.17 0.51 0.74 5.22
15 2.54 0.61 0.81 6.09
16 2.51 0.60 0.80 6.02
17 2.52 0.60 0.80 6.04
18 2.51 0.60 0.78 6.01
19 2.52 0.60 0.78 6.03
20 2.59 0.58 0.99 6.26

V. CONCLUSION

In the recent years, EMD has been proven very useful in
many areas of science and engineering. Unfortunately, due
to its flexibility and a lack of mathematical framework, this
technique has been misused. Metrics proposed in this paper
refer to idealized characteristics of EMD — either suggested,
or intended while creating the method. In contrast to the
most validation methods discussed in the literature, the ones
proposed in this paper are objective, independent from user’s
subjective judgment of the decomposition. Since EMD creates
a set of oscillatory components, the properties on which these
metrics were based are related to their frequencies. Validation
of the whole IMF decomposition set is performed either on
the basis of significant and mutually separate instantaneous
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Fig. 7. The best EMD decomposition set, i.e. producing the smallest metric
M value, for given range of FIXE H parameters. Decomposition obtained
from signal S2(t).

Time [s]

Fig. 8. The worst EMD decomposition set, i.e. producing the biggest metric
M value, for given range of FIXE H parameters. Decomposition obtained
from signal S2(t).

frequencies, or on the attempt to fulfill, or be closer to, the
Bedrosian conditions.

An analysis of examples presented in the section IV seems
to support the usefulness of the proposed metrics. Although the
behaviour of the decomposition can be changed by adjusting
weights wi of the desired feature (Eq. (9)), it should still
provide good results. The best decomposition always produces
less IMFs, which suggests having more compact informa-
tion representation of the original signal. Moreover, visual
inspection confirms that the best decompositions have better
structured (evenly spaced locations of extrema) than the worst
ones.

Nevertheless, despite the foregoing discussion, until there
is a mathematical foundation of the EMD, it is impossible
to create a single metric, which would capture all required
features. Proposed measures should be considered as an assis-
tance for an inexperienced user, providing him with additional
arguments for used parameters choices.
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