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Abstract—A GI/M/1/N -type queuing system with indepen-
dent and generally distributed interarrival times and exponential
service times is investigated. A system of equations for conditional
distributions of the time to the first buffer saturation is built.
The solution is written using a special-type sequence defined
by “input” distributions of the system. The formula of total
probability is used to derive a representation for the distribution
of the time to the kth buffer saturation for k ≥ 2. Moreover,
special cases of the Poisson arrival process and the system with
one-place buffer are discussed. Sample numerical results for the
3-Erlang and deterministic distributions of interarrival times are
attached as well.
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I. INTRODUCTION

A phenomenon of buffer saturation and, in consequence,
losses of the arriving packets is a typical one in telecommuni-
cation networks. As one can note, the well-known performance
measure as the loss ratio, defined as a part of the total
amount of packets in transmission that is lost due to the buffer
saturation, does not give a sufficient information about the
process of losses from the probabilistic point of view. The in-
depth analysis of the problem of losses requires the knowledge
about distributions of times to successive buffer saturations (or,
in other words, periods during which the service process is not
blocked) and durations of such periods.

The review of results for stochastic characteristics of queu-
ing systems with finite buffers in the stationary state can be
found e.g. in [4], [5] and [13]. In [7] distributions of three
different characteristics for the system with the enqueuing
process controlled by a drop function were investigated. A part
of results from [7] was generalized in [14] and [15] where
systems with bounded capacity and continuously distributed
packet volumes were analyzed. Transient results for finite-
buffer queues can also be found e.g. in monograph [1] and
in papers [8] and [9]. In particular, in [9] the system with
additional single server vacations is investigated.

Analytical results for distributions of the time to the buffer
saturation, in fact, are mainly restricted to systems with a
Poisson arrival process (simple or compound) or with the
input flow described by a variant of MAP process. In [1] the
case of the system with batch Poisson arrivals and constant
service times was investigated. The compact formulae for
the distribution of the time to the first buffer saturation was
obtained in [2] for the BMAP/G/1/N−type queue. The case
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of the MMPP−type input stream can be found in [3]. Some
other results related with distributions of the buffer saturation
period and the process of losses can be viewed e.g. in [6]
and [12]. In particular, in [6] the representation for the joint
transform of the busy period and numbers of packets being
served and lost during the busy period was found for the
system with phase-type distributions of interarrival and service
times. In [12] the representation for the distribution of the
number of buffer saturations during a single busy period was
obtained for the system with Poisson arrivals.

In the paper distributions of times to successive buffer
saturations are investigated in the GI/M/1/N−type system
with general independent input stream of packets and expo-
nential service times. Applying the technique proposed in [10]
and developed in [11] the compact formula for the Laplace
transform of the distribution of the time to the first buffer
saturation, conditioned by the number of packets present in
the system at the opening, is obtained. For k ≥ 2 a formula
that allows to express the distribution of the time to the kth
buffer saturation using the conditional distribution of the time
to the first overflow is found.

So, the remaining part of the article is organized as follows.
In the next Section 2 we present a mathematical model of the
system and state auxiliary results. In Section 3 we present
results for the distribution of the time to the first buffer
saturation. In Section 4 a formula for computing distributions
of times to next, successive buffer saturations via conditional
distributions of the first one is obtained. Section 5 contains
results for some special cases: the case of the system with
Poisson arrival process and with one-place buffer. Section 6
is devoted to sample numerical computations, and the last
Section 7 contains conclusions.

II. QUEUING MODEL AND AUXILIARY RESULTS

We consider the GI/M/1/N -type queuing system in which
interarrival times are independent and identically distributed
random variables with a general-type distribution function
F (·), and service times are exponentially distributed with
mean µ−1. The maximal system capacity equals N i.e. there
are N −1 places in the buffer queue and one place in service.

Let F k∗(·) be the k-fold Stieltjes convolution of the distribu-
tion function F (·) with itself. Besides, introduce the notation

f(s) =

∫ ∞
0

e−stdF (t), Re(s) > 0. (1)

Denote by X(t) the number of packets present in the system
at time t. Let β(k)

n be the time to the kth saturation of the
buffer on condition that the system contains exactly n packets



at the opening. So, β(k)
n is the time between the completion

epoch of the (k − 1)th period of buffer saturation and the
initial moment of the kth period of saturation. Of course, β(1)

n

denotes the time from the opening of the system to the first
time of buffer overflow. Thus, we have

β(k)
n = inf {t > 0 : X(t+ τk−1) = N |X(0) = n}, (2)

where k ≥ 1, 0 ≤ n ≤ N−1 and τk stands for the completion
epoch of the kth period of buffer saturation (with additional
agreement τ0 = 0).

For the investigation of the distribution of the time to the
buffer saturation we propose the approach in which a certain
specific-type system of equations occur. The solution of the
system is found using the following result from [10] (see also
[11]) :

Theorem 1. Let (αk), k ≥ 0, α0 6= 0, and (ϕk), k ≥ 1, be
known sequences.

Every solution of the following system of equations:

n−1∑
k=−1

αk+1xn−k − xn = ϕn, n ≥ 1, (3)

can be written in the following form:

xn = CRn +

n∑
k=1

Rn−kϕk, n ≥ 1, (4)

where C does not depend on n and (Rk) is a sequence
defined recursively by means of the given sequence (ak) in
the following way:

R0 = 0, R1 = α−1
0 ,

Rk+1 = R1(Rk −
k∑
i=0

αi+1Rk−i), k ≥ 1. (5)

The sequence (Rk) is called potential connected with the
known sequence (αk).

In fact, in the paper we use a slightly modified version
of Theorem 1, given below, where the system of equations
is numbered beginning with n = 2. Indeed, the following
corollary is a simple consequence of the last theorem:

Corollary 1. Each solution of the following system of equa-
tions:

n−2∑
k=−1

αk+1xn−k − xn = ϕn, n ≥ 2, (6)

can be written as

xn = CRn−1 +

n∑
k=2

Rn−kϕk, n ≥ 2, (7)

where C is a constant independent on n and the potential
(Rk), k ≥ 0, connected with the sequence (αk), is defined by
the formulae (5).

III. DISTRIBUTION OF THE TIME TO THE FIRST BUFFER
SATURATION

The main result of this section is a theorem that gives the
explicit representation for the Laplace transform of the tail
B

(1)
n (·) of conditional distribution function of the time β

(1)
n

from t = 0 to the moment of the first buffer saturation, for
any value of initial system “contents” n.

Define

B(1)
n (t) = P{β(1)

n > t}, (8)

where t > 0, 0 ≤ n ≤ N − 1.
Since the arrival instants in the GI/M/1-type queue are

renewal (Markov) moments, then, applying the formula of total
probability with respect to the first arrival moment after the
opening of the system, we can write the following system of
integral equations:

B(1)
n (t) =

n−1∑
k=0

∫ t

0

(µx)k

k!
e−µxB

(1)
n−k+1(t− x)dF (x)

+

∞∑
k=n

∫ t

0

(µx)k

k!
e−µxB

(1)
1 (t− x)dF (x) +

(
1− F (t)

)
, (9)

where 0 ≤ n ≤ N − 2.
Let us comment briefly (9). The first summand on the right

side of (9) describes the case in that the first packet arrives
at time x < t and before the first arrival the system does not
empty completely. In consequence the number of packets at the
first Markov moment x equals n−k+ 1, where k denotes the
number of packets completely served before x, and the random
event {β(1)

n > t} coincides with {β(1)
n−k+1 > t − x}. The

second summand on the right side of (9) presents the situation
in which the queue becomes empty before the first arrival
epoch x < t. Thus, at the moment x the system “renews” its
operation with exactly n = 1 packet present. Obviously, if the
first packet enters after t, then {β(1)

n > t} with probability one
(compare the third summand on the right side of (9)).

Similarly, for n = N − 1 we get

B
(1)
N−1(t) =

N−2∑
k=1

∫ t

0

(µx)k

k!
e−µxB

(1)
N−k(t− x)dF (x)

+

∞∑
k=N−1

∫ t

0

(µx)k

k!
e−µxB

(1)
1 (t− x)dF (x) +

(
1− F (t)

)
,

(10)

Let us note that in the first summand on the right side of (10)
the sum is taken from k = 1. Evidently, in the situation of no
completed services before the first arrival moment x, at time
x the buffer becomes saturated. Since x < t, then the random
event that the time to the first buffer saturation exceeds t has
probability zero.

Let us introduce the following notation:

αk(s) =

∫ ∞
0

(µx)k

k!
e−(µ+s)xdF (x), k ≥ 0. (11)

Moreover, let

B(1)
n (s) =

∫ ∞
0

e−stB(1)
n (t)dt, Re(s) > 0. (12)



Now the system (9)–(10) can be transformed to the following
form:

B(1)
n (s) =

n−1∑
k=0

αk(s)B
(1)
n−k+1(s)

+B
(1)
1 (s)

∞∑
k=n

αk(s) +
1− f(s)

s
, 0 ≤ n ≤ N − 2, (13)

B
(1)
N−1(s) =

N−2∑
k=1

αk(s)B
(1)
N−k(s)

+B
(1)
1 (s)

∞∑
k=N−1

αk(s) +
1− f(s)

s
. (14)

Defining the following sequence:

ϕn(s) = −B(1)
1 (s)

∞∑
k=n

αk(s)− 1− f(s)

s
, n ≥ 0, (15)

the system (13) can be rewritten as
n−2∑
k=−1

αk+1(s)B
(1)
n−k(s)−B(1)

n (s) = ϕn(s), (16)

where 0 ≤ n ≤ N − 2.
It is easy to note that the system (16) has the same form as

(6). Of course, since now αk and ϕn are, in general, functions
of s, then the representation for the solution of (16) should be
written as (see (7)):

B(1)
n (s) = C(s)Rn−1(s) +

n∑
k=2

Rn−k(s)ϕk(s), (17)

where n ≥ 2, the function C(s) is independent on n and the
potential Rk(s) is defined in (5), where now αk = αk(s).

Of course, at this stage it is impossible to write down the
formulae for B(1)

n , 0 ≤ n ≤ N − 1, explicitly since the
expressions for C(s), B0(s) and B1(s) are unknown (the
formula (17) is valid for n ≥ 2). To find them substitute firstly
n = 2 into the equation (17). We obtain

B
(1)
2 (s) = C(s)R1(s) =

C(s)

α0(s)
. (18)

Taking n = 1 in (13) and applying the identities

α0(s) = f(s+ µ) and
∞∑
k=0

αk(s) = f(s), (19)

we get

B
(1)
1 (s) = α0(s)B

(1)
2 (s)

+B
(1)
1 (s)

(
f(s)− f(s+ µ)

)
+

1− f(s)

s
, (20)

Now, substituting (18) into (20), we have

B
(1)
1 (s) =

s−1
(
1− f(s)

)
+ C(s)

1− f(s) + f(s+ µ)
. (21)

Similarly, taking n = 0 in (13), we obtain

B
(1)
0 (s) = B

(1)
1 (s)f(s) +

1− f(s)

s
. (22)

Let us now substitute n = N − 1 into the formula (17).
Applying, additionally, the representations (15) and (21) we
get

B
(1)
N−1(s) = C(s)RN−2(s)−

N−1∑
k=2

RN−1−k(s)

×

(
s−1
(
1− f(s)

)
+ C(s)

1− f(s) + f(s+ µ)

∞∑
i=k

αi(s) +
1− f(s)

s

)
. (23)

Another representation for B(1)
N−1(s) can be found using the

formula (14). Substituting the identity (17) into (14) we have

B
(1)
N−1(s) =

N−2∑
k=1

αk(s)

[
C(s)RN−1−k(s)−

N−k∑
i=2

RN−k−i(s)

×

(
s−1
(
1− f(s)

)
+ C(s)

1− f(s) + f(s+ µ)

∞∑
j=i

αj(s) +
1− f(s)

s

)]

+
s−1
(
1− f(s)

)
+ C(s)

1− f(s) + f(s+ µ)

∞∑
k=N−1

αk(s) +
1− f(s)

s
. (24)

Now, we can find easily the formula for C(s), comparing the
right sides of (23) and (24). Indeed, we obtain

C(s) =
s−1
(
1− f(s)

)(
1 + a(s)− d(s) + g(s)

)
h(s) + d(s)− a(s)

, (25)

where

a(s) =

∑N−1
k=2 RN−1−k(s)

∑∞
i=k αi(s) +

∑∞
k=N−1 αk(s)

1− f(s) + f(s+ µ)
,

(26)

d(s) =

∑N−2
k=1 αk(s)

∑N−k
i=2 RN−k−i(s)

∑∞
j=i αj(s)

1− f(s) + f(s+ µ)
, (27)

g(s) =

N−1∑
k=2

RN−1−k(s)−
N−2∑
k=1

αk(s)

N−k∑
i=2

RN−k−i(s) (28)

and

h(s) = RN−2(s)−
N−2∑
k=1

αk(s)RN−k−1(s). (29)

Putting together the formulae (17), (21), (22) and (25) we
obtain the following main theorem:

Theorem 2. The formula for the Laplace transform of the tail
of conditional distribution of the time β(1)

n to the first buffer
saturation in the GI/M/1/N -type queue is following:

B(1)
n (s) =

∫ ∞
0

e−stP{β(1)
n > t}dt

=
s−1
(
1− f(s)

)(
1 + a(s)− d(s) + g(s)

)
h(s) + d(s)− a(s)

Rn−1(s)

+

n∑
k=2

Rn−k(s)ϕk(s), (30)



where 2 ≤ n ≤ N − 1, and

ϕn(t) =

−
s−1
(
1− f(s)

)(
1 + g(s) + h(s)

)(
1− f(s) + f(s+ µ)

)(
h(s) + d(s)− a(s)

) ∞∑
k=n

αk(s)

− 1− f(s)

s
. (31)

Besides

B
(1)
1 (s) =

s−1
(
1− f(s)

)(
1 + g(s) + h(s)

)(
1− f(s) + f(s+ µ)

)(
h(s) + d(s)− a(s)

)
(32)

and

B
(1)
0 (s) = B

(1)
1 (s)f(s) +

1− f(s)

s
. (33)

The representations for Rk(s), αk(s), a(s), d(s), g(s) and
h(s) are given in (5), (11), (26), (27), (28) and (29) respec-
tively.

IV. DISTRIBUTION OF THE TIME TO THE kTH BUFFER
SATURATION FOR k ≥ 2

The main aim of this section is in finding a formula to
express the distribution (tail) of the time to the kth buffer
saturation, for k ≥ 2, defined as

B(k)(t) = P{β(k) > t}, (34)

in terms of conditional distributions (tails) B(1)
n (·) of the time

to the first saturation. Indeed, below we prove the following
theorem:

Theorem 3. In the GI/M/1/N−type system the tail B(k)(·)
of the distribution function of the time to the kth buffer
saturation, for k ≥ 2, is independent on k and on the initial
state of the system, and can be written in terms of conditional
distributions B(1)

n (·) of the time to the first saturation in the
following way:

B(k)(t) =

∫ ∞
0

dx

∞∑
j=0

∫ x

0

e−µydF j∗(y)

×
∫ x−y+t

x−y

[
N−2∑
i=1

µi+1(u− x+ y)i

i!
e−µu

×B(1)
N−i

(
t− u+ x− y)

)
+

∞∑
i=N−1

µi+1(u− x+ y)i

i!
e−µu

×B(1)
1

(
t− u+ x− y)

)]
dF (u)

+ µ

∫ ∞
0

e−µxdx

∞∑
j=0

∫ x

0

(
1− F (x− y + t)

)
dF j∗(y). (35)

Proof:
The independence of B(k) on k and on the number of

packets present in the system initially is evident. Indeed,
β(k) expresses the time from the completion epoch of the

(k − 1)th buffer overflow period to the initial epoch of the
kth one. But, independently on the initial state of the system,
at the completion epoch of each period of buffer saturation the
number of packets equals N − 1 (due to “individual” service
discipline).

To prove the representation (35) let us apply the formula
of total probability with respect to the first arrival epoch after
the buffer saturation period. Such an approach is fully justified.
Indeed, in the GI/M/1/N -type queuing model, due to general
distributions of interarrival times, the completion instants τ1,
τ2, ... of successive periods of buffer saturation are not Markov
moments. Simultaneously, due to the memoryless property of
exponential distribution, each period of buffer saturation is
exponentially distributed with the same mean as the service
time i.e. µ−1.

So, the following identity holds true:

B(2)
n (t) =

∫ ∞
0

µe−µxdx

∞∑
j=0

∫ x

0

dF j∗(y)

×
∫ x−y+t

x−y

[
N−2∑
i=1

[
µ(u+ y − x)

]i
i!

e−µ(u+y−x)

×B(1)
N−i

(
t− (u+ y − x)

)
+

∞∑
i=N−1

[
µ(u+ y − x)

]i
i!

e−µ(u+y−x)

×B(1)
1

(
t− (u+ y − x)

)]
dF (u)

+

∫ ∞
0

µe−µxdx

∞∑
j=0

∫ x

0

(
1− F (x− y + t)

)
dF j∗(y). (36)

Let us explain the last formula in details. We position the
origin of the time axis at the initial moment of the buffer
saturation period (that is a Markov moment since it is con-
nected with an arrival of a packet). On the right side of (36)
x indicates the completion epoch of this period and y is the
moment of the last arrival before x. In the first summand on
the right side of (36) the next packet (arriving after y) occurs
after time u < x−y+ t and hence the system does not empty
between x and u−x+ y. The second summand relates to the
situation in which the server becomes idle before time period
u. The last, third summand on the right side of (36) describes
the situation in which we have no arrivals during time t,
beginning with the completion epoch of the buffer saturation
period. In consequence, independently on the instantaneous
number of packets in the system, the next period of buffer
saturation will start after time t with probability one.

Simplification of (36) immediately leads to (35) �

V. SPECIAL CASES

In this section we present some results for two special cases
of the considered queuing model: the case of simple Poisson
arrival process and the case of the buffer with one place only.

A. System with Poisson arrivals
Let us consider the M/M/1/N -type queuing model in

which the arriving packets occur according to a Poisson



process with intensity λ. As it turns out, in such a case it
is possible to express the potential (Rk), defined in (5) and
connected with the given sequence

(
αk(s)

)
from (11), in the

explicit form.
Firstly, let us note that now we have

αk(s) = λ

∫ ∞
0

(µx)k

k!
e−(λ+µ+s)xdx =

λµk

(λ+ µ+ s)k+1

(37)

and, of course, f(s) = λ
λ+s .

Define the generating function R(s, z) of the potential
(Rk(s)) in the following way:

R(s, z) =

∞∑
k=0

zkRk(s), |z| < 1. (38)

Taking into consideration the definition (5) we obtain

R(s, z) =

∞∑
k=1

zkRk(s) = zR1(s)

+

∞∑
k=1

zk+1
[
R1(s)

(
Rk(s)−

k∑
i=0

αi+1(s)Rk−i(s)
)]

= zR1(s)
(
1 +R(s, z)

)
−R1(s)

∞∑
i=0

αi+1(s)zi+1
∞∑
k=i

zk−iRk−i(s)

= zR1(s)
(
1 +R(s, z)

)
−R1(s)R(s, z)

[
f
(
s+ µ(1− z)

)
− α0(s)

]
. (39)

Now we eliminate R(s, z) as follows:

R(s, z) =
z

f
(
s+ µ(1− z)

)
− z

(40)

and, in the case of the considered M/M/1/N -type system,
we get

R(s, z) =
z
[
λ+ s+ µ(1− z)

]
λ− z

[
λ+ s+ µ(1− z)

] . (41)

To find Rk(s) in the explicit form we can use the Mathematica
environment, e.g. the function InverseZTransform, substituting
firstly on the right side of (41) z = 1

z .
Indeed, the kth term of the potential can be written in the

following form:

Rk(s) =
1

2σ(s)(2λ)k

{
2κ(s)

[(
κ(s) + σ(s)

)n
−
(
κ(s)− σ(s)

)n]
+ I{k ≥ 1}

[(
κ(s) + σ(s)

)(
κ(s)− σ(s)

)n
−
(
κ(s)− σ(s)

)(
κ(s) + σ(s)

)n]}
, (42)

where

κ(s) = s+ λ+ µ (43)

and

σ(s) =
√
s2 + (λ− µ)2 + 2s(λ+ µ). (44)

B. System with one-place buffer

Let us consider the original GI/M/1/N−type system with
N = 2 i.e. with the one-place buffer only.

It is easy to verify that the system of equations (13)–(14)
can be written now in the following form:{

B
(1)
0 (s) = f(s)B

(1)
1 (s) + 1−f(s)

s ,

B
(1)
1 (s) = B

(1)
1 (s)

(
f(s)− f(s+ µ)

)
+ 1−f(s)

s .
(45)

Hence we eliminate B(s)
0 (s) and B(1)

1 (s) as follows:
B

(1)
0 (s) =

(
1−f(s)

)(
1+f(s+µ)

)
s
(

1−f(s)+f(s+µ)
) ,

B
(1)
1 (s) = 1−f(s)

s
(

1−f(s)+f(s+µ)
) . (46)

From the definitions (8) and (12) follows that

Eβ(1)
n = B(1)

n (0). (47)

Besides, let us note that

lim
s→0

1− f(s)

s
= − lim

s→0
f ′(0) = EF, (48)

where EF denotes the mean of interarrival times.
Now the identities (45) easily lead to

Eβ
(1)
0 = EFf−1(µ)

(
1 + f(µ)

)
(49)

and

Eβ
(1)
1 = EFf−1(µ), (50)

thus

Eβ
(1)
0 = EF + Eβ

(1)
0 . (51)

The formula (51) has, obviously, very simple intuitive expla-
nation: in the system with one-place buffer the mean of the
time to the first buffer saturation in the system that begins
its evolution being empty (Eβ(1)

0 ), is a sum of the mean of a
waiting time for the first arriving packet (EF ) and the mean of
the time to the first buffer saturation with one packet present
(Eβ(1)

1 ). Of course, similar conclusions can be obtained in
general case, basing on equations of the system (13)–(14).

In the case of the Poisson process with intensity λ describ-
ing the input flow of packets the formulae (49)–(50) simplify
to the forms

Eβ
(1)
0 =

2λ+ µ

λ2
and Eβ

(1)
1 =

λ+ µ

λ2
. (52)

VI. NUMERICAL RESULTS

In this section we present sample numerical computations
illustrating theoretical results obtained in Theorem 2.
All computations are executed using the Mathematica
environment.

Example 1.
Let us take into consideration the E3/M/1/3-type system

in which interarrival times have 3-Erlang distributions with
parameter λ i.e.

F (t) = 1− e−λt
(
1 + λt+

1

2
λ2t2

)
, t > 0. (53)



The traffic load of the system equals ρ = λ
3µ , where µ denotes

the service rate.
In Table I the values of Eβ

(1)
0 , Eβ

(1)
1 and Eβ

(1)
2 are pre-

sented for different values of parameter λ and, in consequence,
for different values of the traffic load ρ, decreasing from 4.00
to 0.17. Results in Table I are obtained keeping µ = 1.

TABLE I
MEAN TIME TO BUFFER SATURATION IN E3/M/1/3 QUEUE IN FUNCTION

OF ARRIVAL RATE

No. Parameter λ Traffic load ρ Eβ
(1)
0 Eβ

(1)
1 Eβ

(1)
2

1 12.0 4.00 0.89862 0.64862 0.33077
2 9.0 3.00 1.28063 0.94730 0.49005
3 7.0 2.33 1.78334 1.35477 0.71504
4 5.0 1.67 2.90999 2.30999 1.27319
5 4.0 1.33 4.19696 3.44696 1.98212
6 3.0 1.00 7.21125 6.21125 3.84088
7 2.5 0.83 10.7058 9.50584 6.21304
8 2.0 0.67 18.5859 17.0859 12.0234
9 1.0 0.33 183 180 156
10 0.5 0.17 4218 4212 4050

Obviously, as one can note, the values of the mean of the
time to the first buffer saturation increase with decreasing
traffic load ρ. As it is intuitively clear, the values of Eβ

(1)
2

are essentially smaller than the corresponding values of Eβ(1)
1

and Eβ
(0)
0 : in the case of n = 2 packets present in the system

initially, the buffer saturation begins if only the first arrival
instant “outruns” the first service completion epoch.

Results from Table I are presented geometrically in Figure 1
(nos. 1–8), where dotted, dashed and solid lines correspond to
the values of Eβ(1)

0 , Eβ
(1)
1 and Eβ

(2)
2 respectively.
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Fig. 1. Mean time to buffer saturation in E3/M/1/3 queue in function of
arrival rate (nos. 1-8)

In Table II (see also Figure 2) the values of the mean time
to the first buffer saturation, under different initial conditions
of the system, are presented in function of the service rate µ.
Results in Table II are obtained taking λ = 3 (so ρ = 1

µ ).

Example 2.
Let us consider now the D/M/1/3−type queuing system in

which interarrival times have deterministic distributions i.e. the
arriving packets occur at constant intervals equal ∆. Assume

TABLE II
MEAN TIME TO BUFFER SATURATION IN E3/M/1/3 QUEUE IN FUNCTION

OF SERVICE RATE

No. Service rate µ Traffic load ρ Eβ
(1)
0 Eβ

(1)
1 Eβ

(1)
2

1 0.1 10.00 3.21402 2.21402 1.11065
2 0.3 3.33 3.73956 2.73956 1.40856
3 0.5 2.00 4.42903 3.42903 1.84107
4 0.6 1.67 4.84998 3.84998 2.12198
5 0.7 1.43 5.33077 4.33077 2.45474
6 0.8 1.25 5.87897 4.87897 2.84667
7 0.9 1.11 6.50281 5.50281 3.30581
8 1.0 1.00 7.21125 6.21125 3.84088
9 1.5 0.67 12.3906 11.3906 8.01563

10 2.0 0.50 21.5075 20.5075 15.8779
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Fig. 2. Mean time to buffer saturation in E3/M/1/3 queue in function of
service rate

that the service rate equals µ = 2, so the traffic load in the
system can be expressed as ρ = 1

2∆ .

In Table III the values of Eβ
(1)
0 , Eβ

(1)
1 and Eβ

(1)
2 are

presented for 10 different values of the constant interarrival
times ∆, namely from 0.1 to 1.0 with step 0.1. Let us note
that, simultaneously, the traffic load ρ changes from 5 to 0.5,
respectively, thus the regime of the system operation changes
from the overloaded to the underloaded one.

TABLE III
MEAN TIME TO BUFFER SATURATION IN D/M/1/3 QUEUE IN FUNCTION

OF ARRIVAL RATE

No. Parameter ∆ Traffic load ρ Eβ
(1)
0 Eβ

(1)
1 Eβ

(1)
2

1 0.1 5.00 0.34690 0.24690 0.12475
2 0.2 2.50 0.82413 0.62413 0.32576
3 0.3 1.67 1.51469 1.21469 0.66805
4 0.4 1.25 2.55926 2.15926 1.26904
5 0.5 1.00 4.19453 3.69453 2.33539
6 0.6 0.83 6.81549 6.21549 4.22342
7 0.7 0.71 11.0758 10.3758 7.53716
8 0.8 0.63 18.0486 17.2486 13.2861
9 0.9 0.56 29.4827 28.5827 23.1380
10 1.0 0.50 48.2091 47.2091 39.8200

The interpretation of results in Table III is similar to that in
Table I. Additionally, let us observe in practice the realization
of the equation (51): in the case of the D/M/1/N−type
system we have Eβ

(1)
1 = Eβ

(0)
0 +∆ (see remark on the equa-

tion (51). Results from Table III are presented geometrically



in Figure 3, where, as previously, dotted, dashed and solid
lines correspond to the values of Eβ

(1)
0 , Eβ

(1)
1 and Eβ

(2)
2

respectively.
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Fig. 3. Mean time to buffer saturation in D/M/1/3 queue in function of
arrival rate

Finally, in Table IV (see also Figure 4) the values of the
mean time to the first buffer saturation, under three different
initial conditions of the operation of the system, are given in
function of the service rate µ. Results in Table IV are obtained
taking ∆ = 2 (so ρ = 1

2µ ).

TABLE IV
MEAN TIME TO BUFFER SATURATION IN D/M/1/3 QUEUE IN FUNCTION

OF SERVICE RATE

No. Service rate µ Traffic load ρ Eβ
(1)
0 Eβ

(1)
1 Eβ

(1)
2

1 0.1 5.00 6.93789 4.93789 2.49509
2 0.2 2.50 8.24127 6.24127 3.25762
3 0.3 1.67 10.0979 8.09793 4.45369
4 0.4 1.25 12.7963 10.7963 6.34520
5 0.5 1.00 16.7781 14.7781 9.34155
6 0.6 0.83 22.7183 20.7183 14.0781
7 0.7 0.71 31.6451 29.6451 21.5347
8 0.8 0.63 45.1214 43.1214 33.2154
9 0.9 0.56 65.5170 63.5170 51.4177
10 1.0 0.50 96.4182 94.4182 79.6401
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Fig. 4. Mean time to buffer saturation in D/M/1/3 queue in function of
service rate

VII. CONCLUSION

In the article distributions of times to successive buffer
saturations are analyzed in the GI/M/1/N -type finite-buffer
queue with general independent input stream of packets and
exponentially distributed service times. The method of po-
tential is applied to obtain the representation for the Laplace
transform of the conditional distribution of the time to the first
period of buffer saturation. Moreover, a formula for the tail
of the distribution function of the “waiting” time to reaching
the kth saturation of the buffer, for k ≥ 2, is proved. The
formula expresses the distribution of the time to next buffer
overflows in terms of the conditional distribution of the time
to the first buffer saturation. Some important special systems
are discussed separately, namely the case of the system with
Poisson arrival stream of packets and with one-place buffer.
Numerical examples illustrating theoretical results are included
as well, where the cases of the 3-Erlang and deterministic
distributions of interarrival times are investigated.
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