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Abstract—A major challenge for intrusion prevention system different sensors and simultaneously schedule individual flows
(IPS) sensors in today's Internet is the amount of traffic these through a single sensor. This architecture also supports traffic

devices have to inspect. Hence this paper presents a linear
program (LP) for traffic scheduling in multi-sensor environments
that alleviates inspection loads at IPS sensors. The model discrim-
inates traffic flows so that the amount of inspected suspicious
traffic is maximized. While the LP is not constrained to integral
solutions, traffic belonging to a flow is mostly scheduled for in-
spection to a single sensor, which facilitates the collection of state
information. An analysis of how the Simplex algorithm solves the
model and numerical results demonstrate that state information
can be preserved without imposing integral constraints. This
benefit prevents the LP from becoming an integer linear program
(ILP), which is essential for efficiently implementing the proposed
model. The paper also shows that the ratio of the total number of
flows integrally inspected by a single sensor to the total number
of flows inspected in a multi-sensor environment depends on the
ratio of IPS sensor capacity to flow traffic rate. Finally, some
practical deployment observations are presented.

discrimination based on flow reputation to alleviate inspection
load at IPSs. Scheduling decisions based on reputation can
relieve overloaded sensors by avoiding inspection of traffic
considered secure. This traffic can then bypass inspection
engines. This scheme is useful in large data transfer scenarios
as those observed in science demilitarized zones (SDMZs) [4].

In light of the above, this paper presents an LP scheme for
traffic scheduling in multi-sensor environments, considering
load balancing. The paper also presents an analysis of how
the Simplex algorithm solve the proposed LP. The analysis
demonstrates that state information can be preserved without
imposing integral constraints to the LP.

The paper is organized as follows. Section Il discusses
related work. Section Il formulates the problem and describes
two models: an LP and an ILP. Section IV presents numerical

Keywords—IPS, Linear Programming, Computer Networks. : . X -
results. Section V describes the preservation of state infor-
[. INTRODUCTION mation. Section VI makes some practical observations, and
Intrusion prevention systems (IPSs) are critical componeri#€ction VII concludes the paper.
for detecting and blocking malicious traffic. IPS sensors are
deployed at the perimeter of a network, where traffic is 1.
analyzed from layer two header to application layer data (layerThis section summarizes previous work related to IPSs.
four payload). This analysis permits IPSs to identify, stop, ahd@ad balancing in IPS systems is addressed by [1], [2]. Sekar
block malicious attacks [1]. Most IPSs are deployed at a fixétl al. [1] described and implemented an IPS prototype for
location. However this approach is facing many challeng&gtwork-wide deployment. This scheme assumes that multiple
owing to the increasing amount of traffic. Hence some scalitigSs are deployed, and that a centralized scheduler distributes
solutions have been proposed in the literature, including IPSffic to avoid IPS overloading. Since the optimization model
clusters, distributed IPSs [1], [2], and high-availability angesults in an NP-hard problem, a randomized algorithm is
scalability products using parallel sensors [3]. proposed. The model assumes that incoming network traffic
Fig. 1 shows a sample high-availability/scalability IPS archfrom multiple locations can be centrally scheduled. Le et al.
tecture with several key features. One of them is a scheduliiZg formulated the load balancing problem in the context of
scheme to forward traffic to the most appropriate sensor, whighrusion detection as an optimization problem. This model
receives feedback from a parameter estimator. A common g@timizes a metric called benefit, which captures the gain of
rameter used to discriminate traffic flows based on reputatibalancing the traffic load while avoiding correlation losses.
is the rate of alarms generated by a given flow. Consider the
case where sensor 1 has twice the inspection capacity of ser Sensor |
2. The scheduler should clearly incorporate load balancii Inspected %ﬁ
traffic
—
Non inspected
traffic

RELATED WORK

into the scheduling decisions. However, although schedi
ing/splitting traffic from a single flow across multiple sensor,
can help balance inspection loads, it also prevents sensors f
collecting critical state information (i.e., correlating data acro:
multiple packets with specific composite signatures). Tt
scheduling scheme must balaraggregate traffic flows across

Inspected
traffic

Scheduler | €—— Paramgtcr
estimation

Multi-sensor IPS architecture. IPS representatiomf6].
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Commercial IPSs also deploy high-availability and scala- ZTp,s >0 neN,seSs. (5)
bility products which use parallel sensors to avoid the typical 0<a<l ©)
single point of failure. Other related works for scaling IDS/IPS - =
use parallelization [7],[8],[9]. These schemes exploit the com- The objective function of the LP, referred as LP-IPS in the
putational power of supercomputers (or multi-core computengst of the paper, consists of two terms with weightsand
by adopting a parallel architecture combining data and pipeliag. The first term is the summation of all traffic inspected
parallelism [7]. Zhanget al. [10] proposed an SDN-basedby all sensors, multiplied by their corresponding alarm rates.
IPS deployment that supports unified scheduling of securiBince F' is maximized, the linear program prioritizes flows
applications in the whole network (and also load balancirwith high alarm rates. Fon € N, the term}_ ¢ pnrntn s
among IPSs). Laniepcet al. [11] highlighted the challenges can be considered as suspicious traffic. Thus, the first term of
associated with designing intrusion monitoring and preventidy. (2) is the aggregated expected suspicious traffic (EST):
services in the cloud. Finally, Xingt al. [12] used OpenFlow
and Snort to build an IPS called SnortFlow. This system can EST = Z anrnxn,s- @

be reconfigured on-the-fly based on dynamic conditions. neN ses

The second term in Eq. (2) is the maximum utilization among
I1l. PROBLEM FORMULATION all sensors. Maximizing the negative of is equivalent to

Thi tion is oraanized as follows. Section NlI-A or n{ninimizing it. Constraint (3) states that the total fraction of
S section 1S organized as Tollows. Sectio A PreSeNipa ffic from flown € N inspected by all sensors should be less
an LP for traffic scheduling in multi-sensor environment

. . . . . r equal to unity. Constraint (4) limits the amount of traffic
Section IlI-B incorporates integral constraints to the prewousE q Y )

defined LP and presents the resulting ILP, and Section - Sr?]i(l:tti[e)lcijezyb?/eansm € 5, where the inspection capacity
discusses the complexity of both LP and ILP models. '

B. Integer Linear Program (ILP) Model

A. Linear Program (LP) model An atomic signature consists of a single event (e.g. packet)
Let S be the set of sensors or IPSs. Each sens&¥ S {nat is examined to determine if it matches a configured signa-
has a processing capacity, measured in traffic units (€.9.yyre. Since these signatures can be matched on a single event,
pps, Mbps, Gbps). Letv be the set of traffic flows t0 beé yhey do not require a sensor to maintain state information.
inspected by the sensors. A flow is deflned_ as a 5-tuple gV the other hand, a composite signature requires several
by {source IP address, source port, destination IP addresg.ces of data (e.g., packets) to match an attack signature, and
destination port, traffic raje The latter is denoted by., hence a sensor must maintain state information. The LP-IPS

n & N. Let A, be the total number of traffic units of flow mogel permits an individual traffic flow to be split and sched-
n € N that triggered alarm events. An alarm event is raisggleq across multiple sensors. However splitting traffic implies
when a signature is examined against an event (e.g. a packglhlt sensors cannot collect full state information. Therefore

and a match is found between the signature and the evgniomposite signatures are predominant, maintaining state
(i-e. potential security violation). The proposed model usesig&qormation will be critical. As a result, all traffie;, of a
dimensionless metric defined as #larm rate to estimate the fow », ¢ N may need to be routed through a single sensor.

rate at which suspicious events occur in flew This metric The LP-IPS can be modified so that traffic from a single

is given by the following ratio: flow n € N is not split. This requirement can be added by
A, restricting variablese,, ; to be binary integers (0 or 1). The
Pn = Ty @ associated program is defined by:
where0 < p,, < 1. If the traffic ,, does not raise any alarm, Max F = w; Z anrnxw — wea. (8)
pn = 0. If all traffic r,, generates alarmg,, = 1. neN ses
Let z, s be the fraction of traffic from flonn € N to be
scheduled at senser € S. If all traffic r,, is successfully ZIn,s <1 n e N. 9)
scheduled and inspected by sensors, then gz, s = 1. Let s€S
0 < o < 1 be the maximum utilization among all sensors. Z Pndn.s < CsQt ses. (10)
Note that a similar metric is also used in IP networks for load neN '
balancing [13]. A value ofr = 1 means that at least one sensor
is operating at full capacity. Based on the above definitions, s €40,1} neNseSs. (11)
the proposed LP is defined by: 0<a<l. (12)
Max F = w, Z anmxn,s — wsa. (2) Note that restricting variables to take integral values converts
nEN ses the LP-IPS into an ILP. This ILP will be referred as ILP-
IPS in the rest of the paper. Also, note that Constraint (9) is
an,s =1 neN. () either satisfied with equality when a single sensor is used to
s€$S inspect the traffic of a flom € N (i.e. only one variable:,, s
Z Fnin.s < Cst ses. (4) s unity), or satisfied with inequality when the traffic is not
neN inspected by any sensor (i.e. all variablgs, are zero).
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C. Complexity of LP-IPS ‘oo co= 1000

Since the LP-IPS is a linear program, it can be solved | o Po = ®00, 0‘1) (to, po) = (800, 0.1)
polynomial time in the size of the problem. The size of LP X1,0 ‘ ifw, .
IPS is given by the number of constraints and variables. Frc (i, pi) = (800, 0.01) “—— ° (t1, p1) = (800, 0.01) °
(5) and (6), the total number of variableskis= |N| - |S] + 1. o= 1500 ¢o= 1000
Similarly, from (3),(4),(5) and (6), the number of constraint (a) (b)

is m = |N| + |S| + |N|-|S| + 2. Both & and m are

polynomial in the number of variables and constraints. Frig- 2. (&) Dual-sensor scenario, (b) single-sensor sagnari

practice the Simplex method runs in polynomial time fof

and m. Similarly, the Interior Point method can solve LP- . )

IPS problem in a polynomial time that is upper-bounded H§SS than the aggregate traffic rate. All flows are inspected by
O(k?m) [14]. On the other hand, the ILP-IPS problem & Sensors with 100 traffic units of capacity each. Flow inter-

an integer linear program and is therefore NP-hard, i.e. tgival times are uniformly distributed between (1-60) time
running time is exponential in the size of the problem. units and their durations are uniformly distributed from (1-15)

time units. Alarm rates are also uniformly distributed between
(0.0001-0.5). Two dynamic scenarios are tested. In scenario 1,

IV. ILLUSTRATIVE EXAMPLES . ' 4 oo )
. . ) . _ __the traffic rate is uniformly distributed between (1-50) traffic
This section presents first a small illustrative example in Fhits (expected value of,,n € N, is E[r,] = 25.5). In

dual-sensor scenario (Section IV-A), followed by a dynar‘nigcenario 2, the traffic rate is uniformly distributed between

example where traffic flows arrive one by one (Section 'V'Bl1-10) traffic units (Hr] = 5.5). Since the ILP-IPS is NP-
hard, only the LP-IPS solution is shown.
A. lllustrative Example 1: Dual-Sensor Scenario To highlight the benefits of incorporating reputation into
Fig. 2(a) illustrates a scenario where sensgrands; have LP-IPS, the dynamic scenarios are solved using two different
inspection capacities @f, = 1000 andc; = 1500 traffic units, approaches. In the first approach, denoted by LP equal alarm
respectively. These sensors have to inspect two traffic flowsae (LP-EAR), the value of,, is the same for all flows: €
and 1, which are characterized by traffic and alarm rages N. In the second approach (simply LP-IPS), flow reputation
po, andry, pi, respectively. Given that the aggregate traffigsingp,, is incorporated. Additionallyy is not reported, as the
rate is less than the aggregate inspection capacity, the solug@gregate traffic rate is higher than the aggregate inspection
for the LP-IPS should perform load balancing. Similarly, ILPcapacity. Figs. 3(a) and 3(b) show the results for dynamic
IPS should also perform load balancing by scheduling flovggenario 1. The normalized EST of Fig. 3(a) is defined as:
0 and 1 through different sensors. _
The solutions for the LP-IPS and ILP-IPS models are shown NormalizedEST = ESTLP;;; ESTLp-ran , (13)
in Table I. The respective objective functions only differ in the LP-EAR
o performance metric, while EST is the same. LP-IPS is abléere ESTrp_rps and ESTLp_par are computed accord-
to minimize the maximum utilization among the sensors 199 to (7). Note thatESTyp_;ps fluctuates between 60%
a = 0.64 by scheduling 80% of flow 1 via sensor 0 and thé@nd 160% above that of LP-EAR during most of the timeline.
remainder of flow 1 and flow 0 through sensor 1. ILP-IP$his indicates that discriminating flows based on alarm rates
schedules all traffic from flow O to sensey, and traffic from allows LP-IPS to improve performance with respect to LP-
flow 1 to sensok;. This solution results in a utilization of 0.80EAR by up to 160%. Fig. 3(b) shows the percentage of flows
and 0.53 for sensors, ands;, respectively. Thus = 0.80.  integrally inspected by a single sensor using LP-IPS, which
Example 1 shows how load balancing can be achieved whegludes any flown € N such that there is a single sensor
the aggregate inspection capacity exceeds the aggregate traffic S for which z,, ; = 1. The findings show that at any
rate. The subsequent dynamic scenarios will show how LBme other than the transient starting and ending times of
IPS discriminates traffic when aggregate inspection capacsiynulation, approximately 80% of all flows are inspected by a
is less that aggregate traffic rate. single sensor. Consider simulation times between10 and
t = 60 units where the aggregate traffic rate is higher than the
aggregate inspection capacity. From the flows inspected during

_ ) . this period, on average 80.07% are integrally inspected by a
The second illustrative example presents two dynamic Sc§agje sensor. The coefficient of variation for this percentage

narios where 1000 flows arrive in random sequential manngr.g 330, Figs. 3(c) and 3(d) show the results for dynamic

Here the sensors must discriminate which flows are MO&enario 2, where traffic rates vary between (1-10). Fig. 3(c)

important to inspect, since the aggregate inspection capacityjg,ys thatEST, p_;ps fluctuates between 20% and 50%
above that of LP-EAR. Between= 0 andt = 8, andt¢ = 64

B. llustrative Example 2: Dynamic Scenarios

TABLE | andt = 70, the performance of LP-IPS and LP-EAR are
SOLUTION FOR EXAMPLE 1 the same because the aggregate traffic rate is less than the
Scheme | Solution | o aggregate inspection capacity. Finally, in the interval between
LP-IPS | @00 = 0.0,20,1 = 1.0,21,0 = 0.8, 71,1 = 0.2 | 0.64 t = 10 andt = 60 units, when the aggregate traffic rate is

ILP-IPS | 20,0 = 1.0,20,1 = 0.0,21,0 = 0.0,21,1 = 1.0 | 0.80 greater than the aggregate inspection capacity, Fig. 3(d) shows
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Fig. 3. (a), (b): Results for the dynamic scenario 1,/fgruniformly distributed between (1-50) € N. (a) Normalized expected suspicious traffic inspected
by sensors, computed according to Eq. (13), (b) Percentage of flows integrally inspected by a single sensor using LP-IPS, (c), (d): Results for the dynam
Scenario 2, for, uniformly distributed between (1-10).

that an average of 95.5% of inspected flows are integrallyThe basic variablesry, = 1, 77, = 1, and x5, =

inspected by a single sensor. The coefficient of variation fé600 are shown in bold. The variables ,, ' o, and g,

this percentage is 0.87%. are slack variables used to drive the problem into canon-
The results in Fig. 3(b) and Fig. 3(d) indicate that thizal form. The current basic feasible solution is given by

percentage of flows integrally inspected by a single sensor(is o; v1,0; 7 o; ¥1 05 Ts,) = (0;0; 1;1;1000). The basic vari-

sensitive to the size of the flow rates with respect to the IRfbles are also the slack variables, and the objective value is

inspection capacities. Larger numbers of flows with smallgf0. In Eq. (14), the coefficient of the variablg , is positive

flow rates (i) are inspected by a single senserc N. This (80); thus, Simplex will attempt to maximize the variablgy,

is confirmed in Section V-B, as presented next. making it a new basic variable in the next iteration. The leaving

basic variable is obtained from Constraints (15) and (17) as:

;7;‘670 =1- Z0,0 2 O, Tsy = 1000 — 8003’;070 Z 0. (18)

V. PRESERVATION OFSTATE INFORMATION

This section presents an analysis of how Simplex solves LP
IPS. Section V-A shows that the solutions by Simplex perntithe maximum value that satisfies both constraints is:
the collection of state information. Section V-B provides an . 1000
approximation of the percentage of traffic flows for which state To,0 = MIN {1 } =1 (19)

. . 7 800
information can be collected.
The leaving basic variable isg ,, i.e., by settingzq =1,
A. Smplex Solution for LP-IPS Simplex schedules flow 0 integrally. Note that this would still

As observed in Figs. 3(b) and 3(d), LP-IPS allows for staf¥ the case in a multi-sensor scenario. The raff in Eq.
preservation without imposing integral constraints. This is &9) IS the residual capacity of sensey to the flow ratero
key result to efficiently solve the scheduling problem. ConsidQng scheduled. The revised linear pr.ograr.n with _the Ot,’leCt'Ve
Fig. 2(b), where two flows are inspected by a single sensfifnction expressed in term of non-basic variables is defined by

Assume that the only objective is the maximization of the ESFIS: (20)-(23).

i.e.w; = 1, wy = 0, anda = 1. The corresponding LP, in 8x10— 80z, =-80+F, (20)
canonical form, is defined by (14)-(17). X0,0 i %70 T 1)
80xo,0 + 8x1,0 = F (14 Z1,0 +x40 = 1 (22)
0.0 +X0.0 = 1, (19 800z1,0 — 800z( + Xgo = 200. (23)
! = 1 16 . . . . .
1,0 TX10 ’ (16) The current basic feasible solution is given by
80020,0 + 80010 + Xso = 1000. (17) (70,0371,0;70,0; T1 03 Tso) = (1;0;0;1;200). The basic
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variables arex o, x’lyo, andz,,, and the objective function is On average one can assume that half of|#iesensors will

F = 80. Note how Simplex integrally schedules flow 0 ratheinspect@ flows integrally and the other half will inspe@—1
than fractional values of flows 0 and 1, permitting sengpr flows integrally. The approximate number of flows integrally
to maintain state information for flow 0. In the next iterationinspected is:

x1,0 becomes the new basic variable because its coefficient in | | |S\ |S|
(20) is positive, and the leaving basic variable is determined Q + = (Q 1) = (2Q —1). (32)
by Constraints (22) and (23):
y (22) (23) Sensors use the|r reS|duaI capacny to inspect fractions of
Tio=1—110>0, x5, = 200 —800x10 > 0. (24) flows, see (30). Thus, after inspecting integral flows, a sensor

would only inspect one fractional flow, i.e. Simplex attempts to
fully schedule one flow before scheduling another. On average
710 = min {17 200} - 1_ (25) there would b S| fractional flows, i.e. one flow per sensor.
7 800) 4 The ratio of the total number of flows integrally inspected by
The leaving basic variable is,,, which indicates that sensora single sensor to the total number of flows inspected is then
so will not have any residual capacity in the next iteratiorapproximated as:

The maximum value that satisfies both constraints is:

S|mplex maximizes the entering basic variablg, to 2% = _ I 20 — 1
, which is the ratio of residual sensor capacity to the flow ratio ~ +— 5= 07T (33)
raterl. Eqs. (26)~(29) are the last teration of Simplex. Clearly, the percentage of traffic flows for which state
— 72z, — Lms() = -84 F, (26) information can be collected depends @n Fig. 4 shows 5
; 100 dynamic scenarios where the input parameters are the same
Xo0  F oo = 1 (27)  as those in Example 2, but with different traffic rate},]
o+ %, o — LISD _ §’ (28) is denoted byE[r], as the traffic rate distribution is the same
’ 800 4 for all n € N. “Avg” indicates the ratio of flows integrally
X10— o + L%U - }. (29) inspected by a single sensor to the total number of flows
’ ’ 800 4 inspected, in the[10 — 60] interval (percentage). “A-Avg”

The coefficients of the non-basic variable§, and =, indicates the corresponding approximate value computed using
in Eq. (26) are negative. Since the linear program is {{33) (percentage). Additionally, the error between the two is
canonical form and any feasible solution to the constraintgovided. The results show that as traffic rates increase with
has non-negative coordinates, the largest possible value fiespect to the capacity of sensors, {Jedecreases, the number
F has been reached (f~= 82). This value is assumedof flows for which sensors can collect state information
at (20,05 71,0320,0; 1 0: Ts,) = (1;4:0;2;0). The variables decreases. However in most current networks the capacity of
of interest with physical representation arg, = 1 and sensors is still few orders of magnitude larger than traffic rates,
x1,0 = 1, Which indicate that 100% and 25% of flows 0 andllowing the preservation of most state information (see green
1 respectively will be inspected. curve in Fig. 4). Even wher) = 20, more than 80% of

A key observation from the above is that the new enterirgspected flows are integrally inspected.
basic variabler. o at each iteratione € N, is the flow to be

scheduled by Simplex, and is given by: V1. PRACTICAL OBSERVATIONS OFLP-IPS
e —mind1 cee’ (30) This section presents few practical recommendations regard-
&0 = e | ing the computation of flow reputation based on the alarm rate

where c;¢* is the residual capacity of senseg. During the
initial iteration, flow O is scheduled integrally, see (19). Th 100
indicator that flow O is integrally scheduled is determined t

setting z.,o, = 1, which is the general case, provided thi - W ﬂH‘” Www w il
. -5 I !
residual capacity.°* is greater than the traffic rate. 55 00 lil | * . | h ). l“ “\ I
EESSFL l\” ' ‘u ‘w||’i.
> 0
B. Sate Information Collection: A Smple Approximation i
. . P 80 :
Note that Figs. 3(b)_ and 3(d) |nd|cat9 that the number ;,,f Er]= 2 Q=50, Avg=0.973, A-Ave = 0.980, Error = 0.66%
traffic flows integrally inspected by a single sensor depen Z z 75 |—E[r]= 5.Q=20, Avg= 0958, A-Avg = 0.951, Error = 0.74% .
i ; o —E [r] =10, Q = 10, Avg = 0.916, A-Avg = 0.905, Error = 1.27%
on sensor capacity and ex.pected traffic rate. Ept,| be the = | T E1=15.0 7, Ava— 0880, Afvg—0.866, Eeror— 1.57% i
expected value of the traffic rate for floowe N and assume E[]=20,Q~ 5. Avg—0.846, A-Avg - 0.818, Error = 3.25%
that all sensors have the same inspection capacitygj=e: 015 20 25 30 35 40 45 50 55 60

Time [time units]

for all s € S. Assume that > E[r,], which is the case for
enterprise IPS sensors, and define the ratio of sensor capagi{ys. simulation results of 5 dynamic scenarios using simitzameters

to expected traffic as: as Example 2{S| = 5,c; = 100,|N| = 1000, p, uniformly distributed
between (0.0001-0.5). Arrival time and flow duration uniformly distributed
Q = round c (31) between (1-60) and (1-15). Traffic rates uniformly distributed betwgen (1-3)
E[ n] (green), (1-9) (black), (1-19) (blue), (1-29) (red), (1-39) (yellow) units.
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metric (Section VI-A) and the implementation of IPS jointlyone connection to external networks, several independent IPS

with access-control lists (Section VI-B). sensors can be deployed. If a set of sensors detects a high level
of matching signatures, that set can add the corresponding flow
A. Flow Sampling and Reputation to a black ACL and apply the ACL to itself and other sensors.

white ACL consists of flows that are completely trusted and

In an ideal scenario all traffic entering a network shoul S ) .

: - 0_not require inspection. Both white and black ACLs release
be inspected. However, as the amount of traffic increases, an ) S .
. S . ‘computational resources as their listed flows are not inspected
improved discrimination mechanism based on flow reputan%n : . : :
. . 55éIPS sensors. Since ACLs are implemented in the forwarding
is needed. Information about flows (such as source addr Sidware of a device. thev do not compromise performance
destination address, source port, destination port, and trae%c )  they P P ‘

: ; . uch mechanisms are preferred to secure a SDMZ [4].

rate) can be dynamically obtained from devices such as routers
and switches. Many modern routers and switches include flow
management applications such as Netflow [15]. VII. CONCLUSION

The LP-IPS model does not include any requirement to_ o .
force at least a minimum sampling of flows to continuously 1NiS Paper presents an optimization scheme to maximize
update the respective alarm rates. Instead this requirement £n @mount of suspicious traffic inspected by IPS sensors.
be met independently of LP-IPS, or alternatively, it can alsb'€ scheme uses flow reputation to prioritize the inspection
be incorporated as folloWsE._ ¢ 7n@n.s > 6,,7n € N. This of flows with high alarm rates. An additional feature of

n+n,s ns M

s€S = ; ; ; .
constraint requires sensors to inspect a minimum amount!Bf scheme s th? load balancmg by which traffic flows are
scheduled according to the capacity of sensors.

traffic 6,, and to report all alarmgl,, raised during inspection. ” )
This information can be used to calculate the alarm rate”An analysis of how Simplex solves the LP-IPS model
»n. Note thatp, can be considered as a point estimate Semonstrates that state information can be preserved without

a signature inspectiomatch probability. Assuming thatp,, imposing integr_al const_r_aints (i.e.,_corr_elating daFa across mul-
follows a binomial distribution, a minimum sample sidg tiple packets with specific composite signatures is achievable).

for estimating the match probability can be computed givé%esults show that the number flows for which state information
a maximal margin of errorE for a confidence levelL: is collected depends on the ratio IPS sensor capacity to traffic

G = pn(1—p )(@)2 The parametet;, is the critical value flow rates (size). In simulated scenarios, when this ratio is

from the normal distribution for the confidence level[16]. 50 (IPS sensor capacity i_s 50 times that of flow rates), the
In order to capture dynamic conditions where intrusioRercentage of flows for which sensors can correlate data across

attempts may occur, it may be desirable to continuously upddytiple packets is above 95%. Even when this ratio is only
the alarm ratep,. One approach is to use an exponenti%o' the percentage of flows for which sensors can correlate

average of the previous alarm rates. Eq. (1) can included@t@ across multiple packets is above 80%. ,
Since LP-IPS is not constrained to integer variables, the

time dimensionp,,(t) = ’;‘—"(t), which measures the alarm i Y

rate during the interval betweenand ¢ + 1. For0 < A < 1, scheme can bg s_olved and |mpleme_nted effllmently. As the
the predicted alarm rate at+ 1 is given by: pn(t + 1) = gbove results indicate, the scheme_ is effective for protect-
APn (t)+(1—=\)pn(L). pn(t) stores the most recent informationing net\/\_/orks_ from attacks characterized by both_atom|c a_\nd
whereasj, (t) tracks past history. The parametercontrols compoere S|gnaturgs. The paper concludes with practical
the relative weight of recent and past historylf= 1, then observation for the implementation of the proposed scheme.

Pn(t + 1) = p,(t), i.e. only the recent alarm rate matters

and history is irrelevant. Note _th@tl(o) can be def_ined.as a REFERENCES
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