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Abstract—A major challenge for intrusion prevention system
(IPS) sensors in today’s Internet is the amount of traffic these
devices have to inspect. Hence this paper presents a linear
program (LP) for traffic scheduling in multi-sensor environments
that alleviates inspection loads at IPS sensors. The model discrim-
inates traffic flows so that the amount of inspected suspicious
traffic is maximized. While the LP is not constrained to integral
solutions, traffic belonging to a flow is mostly scheduled for in-
spection to a single sensor, which facilitates the collection of state
information. An analysis of how the Simplex algorithm solves the
model and numerical results demonstrate that state information
can be preserved without imposing integral constraints. This
benefit prevents the LP from becoming an integer linear program
(ILP), which is essential for efficiently implementing the proposed
model. The paper also shows that the ratio of the total number of
flows integrally inspected by a single sensor to the total number
of flows inspected in a multi-sensor environment depends on the
ratio of IPS sensor capacity to flow traffic rate. Finally, some
practical deployment observations are presented.
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I. I NTRODUCTION

Intrusion prevention systems (IPSs) are critical components
for detecting and blocking malicious traffic. IPS sensors are
deployed at the perimeter of a network, where traffic is
analyzed from layer two header to application layer data (layer
four payload). This analysis permits IPSs to identify, stop, and
block malicious attacks [1]. Most IPSs are deployed at a fixed
location. However this approach is facing many challenges
owing to the increasing amount of traffic. Hence some scaling
solutions have been proposed in the literature, including IPS
clusters, distributed IPSs [1], [2], and high-availability and
scalability products using parallel sensors [3].

Fig. 1 shows a sample high-availability/scalability IPS archi-
tecture with several key features. One of them is a scheduling
scheme to forward traffic to the most appropriate sensor, which
receives feedback from a parameter estimator. A common pa-
rameter used to discriminate traffic flows based on reputation
is the rate of alarms generated by a given flow. Consider the
case where sensor 1 has twice the inspection capacity of sensor
2. The scheduler should clearly incorporate load balancing
into the scheduling decisions. However, although schedul-
ing/splitting traffic from a single flow across multiple sensors
can help balance inspection loads, it also prevents sensors from
collecting critical state information (i.e., correlating data across
multiple packets with specific composite signatures). The
scheduling scheme must balanceaggregate traffic flows across
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different sensors and simultaneously schedule individual flows
through a single sensor. This architecture also supports traffic
discrimination based on flow reputation to alleviate inspection
load at IPSs. Scheduling decisions based on reputation can
relieve overloaded sensors by avoiding inspection of traffic
considered secure. This traffic can then bypass inspection
engines. This scheme is useful in large data transfer scenarios
as those observed in science demilitarized zones (SDMZs) [4].

In light of the above, this paper presents an LP scheme for
traffic scheduling in multi-sensor environments, considering
load balancing. The paper also presents an analysis of how
the Simplex algorithm solve the proposed LP. The analysis
demonstrates that state information can be preserved without
imposing integral constraints to the LP.

The paper is organized as follows. Section II discusses
related work. Section III formulates the problem and describes
two models: an LP and an ILP. Section IV presents numerical
results. Section V describes the preservation of state infor-
mation. Section VI makes some practical observations, and
Section VII concludes the paper.

II. RELATED WORK

This section summarizes previous work related to IPSs.
Load balancing in IPS systems is addressed by [1], [2]. Sekar
et al. [1] described and implemented an IPS prototype for
network-wide deployment. This scheme assumes that multiple
IPSs are deployed, and that a centralized scheduler distributes
traffic to avoid IPS overloading. Since the optimization model
results in an NP-hard problem, a randomized algorithm is
proposed. The model assumes that incoming network traffic
from multiple locations can be centrally scheduled. Le et al.
[2] formulated the load balancing problem in the context of
intrusion detection as an optimization problem. This model
optimizes a metric called benefit, which captures the gain of
balancing the traffic load while avoiding correlation losses.

Fig. 1. Multi-sensor IPS architecture. IPS representation from [6].
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Commercial IPSs also deploy high-availability and scala-
bility products which use parallel sensors to avoid the typical
single point of failure. Other related works for scaling IDS/IPS
use parallelization [7],[8],[9]. These schemes exploit the com-
putational power of supercomputers (or multi-core computers)
by adopting a parallel architecture combining data and pipeline
parallelism [7]. Zhanget al. [10] proposed an SDN-based
IPS deployment that supports unified scheduling of security
applications in the whole network (and also load balancing
among IPSs). Laniepceet al. [11] highlighted the challenges
associated with designing intrusion monitoring and prevention
services in the cloud. Finally, Xinget al. [12] used OpenFlow
and Snort to build an IPS called SnortFlow. This system can
be reconfigured on-the-fly based on dynamic conditions.

III. PROBLEM FORMULATION

This section is organized as follows. Section III-A presents
an LP for traffic scheduling in multi-sensor environments.
Section III-B incorporates integral constraints to the previously
defined LP and presents the resulting ILP, and Section III-C
discusses the complexity of both LP and ILP models.

A. Linear Program (LP) model

Let S be the set of sensors or IPSs. Each sensors ∈ S

has a processing capacitycs, measured in traffic units (e.g.
pps, Mbps, Gbps). LetN be the set of traffic flows to be
inspected by the sensors. A flow is defined as a 5-tuple given
by {source IP address, source port, destination IP address,
destination port, traffic rate}. The latter is denoted byrn,
n ∈ N . Let An be the total number of traffic units of flow
n ∈ N that triggered alarm events. An alarm event is raised
when a signature is examined against an event (e.g. a packet),
and a match is found between the signature and the event
(i.e. potential security violation). The proposed model uses a
dimensionless metric defined as thealarm rate to estimate the
rate at which suspicious events occur in flown. This metric
is given by the following ratio:

pn =
An

rn
. (1)

where0 ≤ pn ≤ 1. If the traffic rn does not raise any alarm,
pn = 0. If all traffic rn generates alarms,pn = 1.

Let xn,s be the fraction of traffic from flown ∈ N to be
scheduled at sensors ∈ S. If all traffic rn is successfully
scheduled and inspected by sensors, then

∑

s∈S xn,s = 1. Let
0 ≤ α ≤ 1 be the maximum utilization among all sensors.
Note that a similar metric is also used in IP networks for load
balancing [13]. A value ofα = 1 means that at least one sensor
is operating at full capacity. Based on the above definitions,
the proposed LP is defined by:

Max F = w1

∑

n∈N

∑

s∈S

pnrnxn,s − w2α. (2)

∑

s∈S

xn,s ≤ 1 n ∈ N. (3)

∑

n∈N

rnxn,s ≤ csα s ∈ S. (4)

xn,s ≥ 0 n ∈ N, s ∈ S. (5)

0 ≤ α ≤ 1. (6)

The objective function of the LP, referred as LP-IPS in the
rest of the paper, consists of two terms with weightsw1 and
w2. The first term is the summation of all traffic inspected
by all sensors, multiplied by their corresponding alarm rates.
SinceF is maximized, the linear program prioritizes flows
with high alarm rates. Forn ∈ N , the term

∑

s∈S pnrnxn,s

can be considered as suspicious traffic. Thus, the first term of
Eq. (2) is the aggregated expected suspicious traffic (EST):

EST =
∑

n∈N

∑

s∈S

pnrnxn,s. (7)

The second term in Eq. (2) is the maximum utilization among
all sensors. Maximizing the negative ofα is equivalent to
minimizing it. Constraint (3) states that the total fraction of
traffic from flown ∈ N inspected by all sensors should be less
or equal to unity. Constraint (4) limits the amount of traffic
inspected by sensors ∈ S, where the inspection capacitycs
is multiplied byα.

B. Integer Linear Program (ILP) Model

An atomic signature consists of a single event (e.g. packet)
that is examined to determine if it matches a configured signa-
ture. Since these signatures can be matched on a single event,
they do not require a sensor to maintain state information.
On the other hand, a composite signature requires several
pieces of data (e.g., packets) to match an attack signature, and
hence a sensor must maintain state information. The LP-IPS
model permits an individual traffic flow to be split and sched-
uled across multiple sensors. However splitting traffic implies
that sensors cannot collect full state information. Therefore
if composite signatures are predominant, maintaining state
information will be critical. As a result, all trafficrn of a
flow n ∈ N may need to be routed through a single sensor.

The LP-IPS can be modified so that traffic from a single
flow n ∈ N is not split. This requirement can be added by
restricting variablesxn,s to be binary integers (0 or 1). The
associated program is defined by:

Max F = w1

∑

n∈N

∑

s∈S

pnrnxn,s − w2α. (8)

∑

s∈S

xn,s ≤ 1 n ∈ N. (9)

∑

n∈N

rnxn,s ≤ csα s ∈ S. (10)

xn,s ∈ {0, 1} n ∈ N, s ∈ S. (11)

0 ≤ α ≤ 1. (12)

Note that restricting variables to take integral values converts
the LP-IPS into an ILP. This ILP will be referred as ILP-
IPS in the rest of the paper. Also, note that Constraint (9) is
either satisfied with equality when a single sensor is used to
inspect the traffic of a flown ∈ N (i.e. only one variablexn,s

is unity), or satisfied with inequality when the traffic is not
inspected by any sensor (i.e. all variablesxn,s are zero).
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C. Complexity of LP-IPS

Since the LP-IPS is a linear program, it can be solved in
polynomial time in the size of the problem. The size of LP-
IPS is given by the number of constraints and variables. From
(5) and (6), the total number of variables isk = |N | · |S|+1.
Similarly, from (3),(4),(5) and (6), the number of constraints
is m = |N | + |S| + |N | · |S| + 2. Both k and m are
polynomial in the number of variables and constraints. In
practice the Simplex method runs in polynomial time ofk

and m. Similarly, the Interior Point method can solve LP-
IPS problem in a polynomial time that is upper-bounded by
O(k2m) [14]. On the other hand, the ILP-IPS problem is
an integer linear program and is therefore NP-hard, i.e. the
running time is exponential in the size of the problem.

IV. I LLUSTRATIVE EXAMPLES

This section presents first a small illustrative example in a
dual-sensor scenario (Section IV-A), followed by a dynamic
example where traffic flows arrive one by one (Section IV-B).

A. Illustrative Example 1: Dual-Sensor Scenario

Fig. 2(a) illustrates a scenario where sensorss0 ands1 have
inspection capacities ofc0 = 1000 andc1 = 1500 traffic units,
respectively. These sensors have to inspect two traffic flows 0
and 1, which are characterized by traffic and alarm ratesr0,
p0, and r1, p1, respectively. Given that the aggregate traffic
rate is less than the aggregate inspection capacity, the solution
for the LP-IPS should perform load balancing. Similarly, ILP-
IPS should also perform load balancing by scheduling flows
0 and 1 through different sensors.

The solutions for the LP-IPS and ILP-IPS models are shown
in Table I. The respective objective functions only differ in the
α performance metric, while EST is the same. LP-IPS is able
to minimize the maximum utilization among the sensors to
α = 0.64 by scheduling 80% of flow 1 via sensor 0 and the
remainder of flow 1 and flow 0 through sensor 1. ILP-IPS
schedules all traffic from flow 0 to sensors0, and traffic from
flow 1 to sensors1. This solution results in a utilization of 0.80
and 0.53 for sensorss0 ands1, respectively. Thusα = 0.80.

Example 1 shows how load balancing can be achieved when
the aggregate inspection capacity exceeds the aggregate traffic
rate. The subsequent dynamic scenarios will show how LP-
IPS discriminates traffic when aggregate inspection capacity
is less that aggregate traffic rate.

B. Illustrative Example 2: Dynamic Scenarios

The second illustrative example presents two dynamic sce-
narios where 1000 flows arrive in random sequential manner.
Here the sensors must discriminate which flows are more
important to inspect, since the aggregate inspection capacity is

TABLE I
SOLUTION FOR EXAMPLE 1

Scheme Solution α

LP-IPS x0,0 = 0.0, x0,1 = 1.0, x1,0 = 0.8, x1,1 = 0.2 0.64
ILP-IPS x0,0 = 1.0, x0,1 = 0.0, x1,0 = 0.0, x1,1 = 1.0 0.80

Fig. 2. (a) Dual-sensor scenario, (b) single-sensor scenario.

less than the aggregate traffic rate. All flows are inspected by
5 sensors with 100 traffic units of capacity each. Flow inter-
arrival times are uniformly distributed between (1-60) time
units and their durations are uniformly distributed from (1-15)
time units. Alarm rates are also uniformly distributed between
(0.0001-0.5). Two dynamic scenarios are tested. In scenario 1,
the traffic rate is uniformly distributed between (1-50) traffic
units (expected value ofrn, n ∈ N, is E[rn] = 25.5). In
Scenario 2, the traffic rate is uniformly distributed between
(1-10) traffic units (E[rn] = 5.5). Since the ILP-IPS is NP-
hard, only the LP-IPS solution is shown.

To highlight the benefits of incorporating reputation into
LP-IPS, the dynamic scenarios are solved using two different
approaches. In the first approach, denoted by LP equal alarm
rate (LP-EAR), the value ofpn is the same for all flowsn ∈
N . In the second approach (simply LP-IPS), flow reputation
usingpn is incorporated. Additionally,α is not reported, as the
aggregate traffic rate is higher than the aggregate inspection
capacity. Figs. 3(a) and 3(b) show the results for dynamic
scenario 1. The normalized EST of Fig. 3(a) is defined as:

NormalizedEST =
ESTLP−IPS − ESTLP−EAR

ESTLP−EAR

, (13)

whereESTLP−IPS andESTLP−EAR are computed accord-
ing to (7). Note thatESTLP−IPS fluctuates between 60%
and 160% above that of LP-EAR during most of the timeline.
This indicates that discriminating flows based on alarm rates
allows LP-IPS to improve performance with respect to LP-
EAR by up to 160%. Fig. 3(b) shows the percentage of flows
integrally inspected by a single sensor using LP-IPS, which
includes any flown ∈ N such that there is a single sensor
s ∈ S for which xn,s = 1. The findings show that at any
time other than the transient starting and ending times of
simulation, approximately 80% of all flows are inspected by a
single sensor. Consider simulation times betweent = 10 and
t = 60 units where the aggregate traffic rate is higher than the
aggregate inspection capacity. From the flows inspected during
this period, on average 80.07% are integrally inspected by a
single sensor. The coefficient of variation for this percentage
is 5.33%. Figs. 3(c) and 3(d) show the results for dynamic
Scenario 2, where traffic rates vary between (1-10). Fig. 3(c)
shows thatESTLP−IPS fluctuates between 20% and 50%
above that of LP-EAR. Betweent = 0 and t = 8, andt = 64
and t = 70, the performance of LP-IPS and LP-EAR are
the same because the aggregate traffic rate is less than the
aggregate inspection capacity. Finally, in the interval between
t = 10 and t = 60 units, when the aggregate traffic rate is
greater than the aggregate inspection capacity, Fig. 3(d) shows
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Fig. 3. (a), (b): Results for the dynamic scenario 1, forrn uniformly distributed between (1-50),n ∈ N . (a) Normalized expected suspicious traffic inspected
by sensors, computed according to Eq. (13), (b) Percentage of flows integrally inspected by a single sensor using LP-IPS, (c), (d): Results for the dynamic
Scenario 2, forrn uniformly distributed between (1-10).

that an average of 95.5% of inspected flows are integrally
inspected by a single sensor. The coefficient of variation for
this percentage is 0.87%.

The results in Fig. 3(b) and Fig. 3(d) indicate that the
percentage of flows integrally inspected by a single sensor is
sensitive to the size of the flow rates with respect to the IPS
inspection capacities. Larger numbers of flows with smaller
flow rates (rn) are inspected by a single sensor,n ∈ N . This
is confirmed in Section V-B, as presented next.

V. PRESERVATION OFSTATE INFORMATION

This section presents an analysis of how Simplex solves LP-
IPS. Section V-A shows that the solutions by Simplex permit
the collection of state information. Section V-B provides an
approximation of the percentage of traffic flows for which state
information can be collected.

A. Simplex Solution for LP-IPS

As observed in Figs. 3(b) and 3(d), LP-IPS allows for state
preservation without imposing integral constraints. This is a
key result to efficiently solve the scheduling problem. Consider
Fig. 2(b), where two flows are inspected by a single sensor.
Assume that the only objective is the maximization of the EST,
i.e. w1 = 1, w2 = 0, andα = 1. The corresponding LP, in
canonical form, is defined by (14)-(17).

80x0,0 + 8x1,0 = F, (14)

x0,0 + x
′

0,0 = 1, (15)

x1,0 + x
′

1,0 = 1, (16)

800x0,0 + 800x1,0 + xs0
= 1000. (17)

The basic variablesx′

0,0 = 1, x′

1,0 = 1, and xs0 =
1000 are shown in bold. The variablesx′

0,0, x′

1,0, and xs0

are slack variables used to drive the problem into canon-
ical form. The current basic feasible solution is given by
(x0,0;x1,0;x

′

0,0;x
′

1,0;xs0) = (0; 0; 1; 1; 1000). The basic vari-
ables are also the slack variables, and the objective value is
F0. In Eq. (14), the coefficient of the variablex0,0 is positive
(80); thus, Simplex will attempt to maximize the variablex0,0,
making it a new basic variable in the next iteration. The leaving
basic variable is obtained from Constraints (15) and (17) as:

x′

0,0 = 1− x0,0 ≥ 0, xs0 = 1000− 800x0,0 ≥ 0. (18)

The maximum value that satisfies both constraints is:

x0,0 = min

{

1,
1000

800

}

= 1. (19)

The leaving basic variable isx′

0,0, i.e., by settingx0,0=1,
Simplex schedules flow 0 integrally. Note that this would still
be the case in a multi-sensor scenario. The ratio1000

800
in Eq.

(19) is the residual capacity of sensors0 to the flow rater0
being scheduled. The revised linear program with the objective
function expressed in term of non-basic variables is defined by
Eqs. (20)-(23).

8x1,0 − 80x′

0,0 = −80 + F, (20)

x0,0 + x′

0,0 = 1, (21)

x1,0 + x
′

1,0 = 1, (22)

800x1,0 − 800x′

0,0 + xs0
= 200. (23)

The current basic feasible solution is given by
(x0,0;x1,0;x

′

0,0;x
′

1,0;xs0) = (1; 0; 0; 1; 200). The basic

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 6, No. 2 (2017)

76



variables arex0,0, x′

1,0, andxs0 , and the objective function is
F = 80. Note how Simplex integrally schedules flow 0 rather
than fractional values of flows 0 and 1, permitting sensors0
to maintain state information for flow 0. In the next iteration,
x1,0 becomes the new basic variable because its coefficient in
(20) is positive, and the leaving basic variable is determined
by Constraints (22) and (23):

x′

1,0 = 1− x1,0 ≥ 0, xs0 = 200− 800x1,0 ≥ 0. (24)

The maximum value that satisfies both constraints is:

x1,0 = min

{

1,
200

800

}

=
1

4
. (25)

The leaving basic variable isxs0 , which indicates that sensor
s0 will not have any residual capacity in the next iteration.
Simplex maximizes the entering basic variablex1,0 to 200

800
=

1

4
, which is the ratio of residual sensor capacity to the flow

rater1. Eqs. (26)–(29) are the last iteration of Simplex.

− 72x′

0,0 −
1

100
xs0 = −82 + F, (26)

x0,0 + x′

0,0 = 1, (27)

x′

0,0 + x
′

1,0 −
1

800
xs0 =

3

4
, (28)

x1,0 − x′

0,0 +
1

800
xs0 =

1

4
. (29)

The coefficients of the non-basic variablesx′

0,0 and xs0

in Eq. (26) are negative. Since the linear program is in
canonical form and any feasible solution to the constraints
has non-negative coordinates, the largest possible value for
F has been reached (F= 82). This value is assumed
at (x0,0;x1,0;x

′

0,0;x
′

1,0;xs0) = (1; 1

4
; 0; 3

4
; 0). The variables

of interest with physical representation arex0,0 = 1 and
x1,0 = 1

4
, which indicate that 100% and 25% of flows 0 and

1 respectively will be inspected.
A key observation from the above is that the new entering

basic variablexe,0 at each iteration,e ∈ N , is the flow to be
scheduled by Simplex, and is given by:

xe,0 = min

{

1,
cress0

re

}

, (30)

where cress0
is the residual capacity of sensors0. During the

initial iteration, flow 0 is scheduled integrally, see (19). The
indicator that flow 0 is integrally scheduled is determined by
setting xe,0 = 1, which is the general case, provided the
residual capacitycress0

is greater than the traffic ratere.

B. State Information Collection: A Simple Approximation

Note that Figs. 3(b) and 3(d) indicate that the number of
traffic flows integrally inspected by a single sensor depends
on sensor capacity and expected traffic rate. LetE[rn] be the
expected value of the traffic rate for flown ∈ N and assume
that all sensors have the same inspection capacity, i.e.cs=c
for all s ∈ S. Assume thatc > E[rn], which is the case for
enterprise IPS sensors, and define the ratio of sensor capacity
to expected traffic as:

Q = round

(

c

E[rn]

)

. (31)

On average one can assume that half of the|S| sensors will
inspectQ flows integrally and the other half will inspectQ−1
flows integrally. The approximate number of flows integrally
inspected is:

I ≈
|S|

2
Q+

|S|

2
(Q− 1) =

|S|

2
(2Q− 1). (32)

Sensors use their residual capacity to inspect fractions of
flows, see (30). Thus, after inspecting integral flows, a sensor
would only inspect one fractional flow, i.e. Simplex attempts to
fully schedule one flow before scheduling another. On average
there would be|S| fractional flows, i.e. one flow per sensor.
The ratio of the total number of flows integrally inspected by
a single sensor to the total number of flows inspected is then
approximated as:

ratio≈
I

I + |S|
=

2Q− 1

2Q+ 1
. (33)

Clearly, the percentage of traffic flows for which state
information can be collected depends onQ. Fig. 4 shows 5
dynamic scenarios where the input parameters are the same
as those in Example 2, but with different traffic rate.E[rn]
is denoted byE[r], as the traffic rate distribution is the same
for all n ∈ N . “Avg” indicates the ratio of flows integrally
inspected by a single sensor to the total number of flows
inspected, in the[10 − 60] interval (percentage). “A-Avg”
indicates the corresponding approximate value computed using
(33) (percentage). Additionally, the error between the two is
provided. The results show that as traffic rates increase with
respect to the capacity of sensors, i.e.Q decreases, the number
of flows for which sensors can collect state information
decreases. However in most current networks the capacity of
sensors is still few orders of magnitude larger than traffic rates,
allowing the preservation of most state information (see green
curve in Fig. 4). Even whenQ = 20, more than 80% of
inspected flows are integrally inspected.

VI. PRACTICAL OBSERVATIONS OFLP-IPS

This section presents few practical recommendations regard-
ing the computation of flow reputation based on the alarm rate

Fig. 4. Simulation results of 5 dynamic scenarios using similar parameters
as Example 2:|S| = 5, cs = 100, |N | = 1000, pn uniformly distributed
between (0.0001-0.5). Arrival time and flow duration uniformly distributed
between (1-60) and (1-15). Traffic rates uniformly distributed between (1-3)
(green), (1-9) (black), (1-19) (blue), (1-29) (red), (1-39) (yellow) units.
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metric (Section VI-A) and the implementation of IPS jointly
with access-control lists (Section VI-B).

A. Flow Sampling and Reputation

In an ideal scenario all traffic entering a network should
be inspected. However, as the amount of traffic increases, an
improved discrimination mechanism based on flow reputation
is needed. Information about flows (such as source address,
destination address, source port, destination port, and traffic
rate) can be dynamically obtained from devices such as routers
and switches. Many modern routers and switches include flow
management applications such as Netflow [15].

The LP-IPS model does not include any requirement to
force at least a minimum sampling of flows to continuously
update the respective alarm rates. Instead this requirement can
be met independently of LP-IPS, or alternatively, it can also
be incorporated as follows:

∑

s∈S rnxn,s ≥ δn, n ∈ N. This
constraint requires sensors to inspect a minimum amount of
traffic δn and to report all alarmsAn raised during inspection.
This information can be used to calculate the alarm rate
pn. Note thatpn can be considered as a point estimate of
a signature inspectionmatch probability. Assuming thatpn
follows a binomial distribution, a minimum sample sizeδn
for estimating the match probability can be computed given
a maximal margin of errorE for a confidence levelL:
δn = pn(1−pn)

(

zL
E

)2
. The parameterzL is the critical value

from the normal distribution for the confidence levelL [16].
In order to capture dynamic conditions where intrusion

attempts may occur, it may be desirable to continuously update
the alarm ratepn. One approach is to use an exponential
average of the previous alarm rates. Eq. (1) can include a
time dimensionpn(t) = An

rn
(t), which measures the alarm

rate during the interval betweent and t + 1. For 0 ≤ λ ≤ 1,
the predicted alarm rate att + 1 is given by: p̂n(t + 1) =
λpn(t)+(1−λ)p̂n(t). pn(t) stores the most recent information,
whereasp̂n(t) tracks past history. The parameterλ controls
the relative weight of recent and past history. Ifλ = 1, then
p̂n(t + 1) = pn(t), i.e. only the recent alarm rate matters
and history is irrelevant. Note that̂pn(0) can be defined as a
constant. For example, flows inspected for the first time for
which there are no alarm records would have a largep̂n(0)
value. According to the objective function (2), LP-IPS would
then maximize the inspected traffic from this flow. Over time,
p̂n(t) will be adjusted according to the above exponential
average expression.

B. Access Control Lists

Commercial IPS sensors have the capability to block traffic
from a particular flow, commonly specified in an access
control list (ACL). An ACL is a sequential list of permit or
deny statements that apply to IP addresses and upper-layer
protocol features, such as ports. A black ACL consists of
flows that are blocked (from attacking systems) and do not
consume any IPS resources. One advantage of this blocking
action is that a single IPS sensor can stop traffic at multiple
locations throughout the network, regardless of its location.
For example, in a multi-homed network that has more than

one connection to external networks, several independent IPS
sensors can be deployed. If a set of sensors detects a high level
of matching signatures, that set can add the corresponding flow
to a black ACL and apply the ACL to itself and other sensors.
A white ACL consists of flows that are completely trusted and
do not require inspection. Both white and black ACLs release
computational resources as their listed flows are not inspected
by IPS sensors. Since ACLs are implemented in the forwarding
hardware of a device, they do not compromise performance.
Such mechanisms are preferred to secure a SDMZ [4].

VII. C ONCLUSION

This paper presents an optimization scheme to maximize
the amount of suspicious traffic inspected by IPS sensors.
The scheme uses flow reputation to prioritize the inspection
of flows with high alarm rates. An additional feature of
the scheme is the load balancing by which traffic flows are
scheduled according to the capacity of sensors.

An analysis of how Simplex solves the LP-IPS model
demonstrates that state information can be preserved without
imposing integral constraints (i.e., correlating data across mul-
tiple packets with specific composite signatures is achievable).
Results show that the number flows for which state information
is collected depends on the ratio IPS sensor capacity to traffic
flow rates (size). In simulated scenarios, when this ratio is
50 (IPS sensor capacity is 50 times that of flow rates), the
percentage of flows for which sensors can correlate data across
multiple packets is above 95%. Even when this ratio is only
20, the percentage of flows for which sensors can correlate
data across multiple packets is above 80%.

Since LP-IPS is not constrained to integer variables, the
scheme can be solved and implemented efficiently. As the
above results indicate, the scheme is effective for protect-
ing networks from attacks characterized by both atomic and
composite signatures. The paper concludes with practical
observation for the implementation of the proposed scheme.
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