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Abstract— Direction-of-arrival (DOA) of radio signals takes 

a great scientific interest for radar, sonar and wireless 

communication tasks. In this paper the problem of DOA 

estimation methods for circular and concentric circular 

antenna arrays is considered. The super-resolution method 

MUSIC is researched. The performances are estimated in 

various noise environments and for various geometries of 

antenna arrays. Additionally, the problem of false peaks 

occurring in spatial spectrum is closely considered. Probability 

of occurring false peaks after computer simulations is 

presented. 
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I. INTRODUCTION 

DOA-estimation of signal sources takes an important interest 

for such tasks as radars, sonars and wireless 

communications. DOA-estimation is crucial for radar 

technologies to detect and divide several signal sources, 

while in wireless communication systems information about 

signal coordinates allows spatial multiplexing to increase the 

number of simultaneously working users [1]. 

In that kind of application, spatial processing methods 

require the output signals from all the antenna elements to be 

in the digital domain. The output signals are necessary to be 

processed simultaneously. Increasing the number of 

transceiver units levels up output signal-noise ratio (SNR). It 

is known that high SNR value indeed enhances accuracy and 

spatial resolution of the DOA-estimation methods [2]. At 

present there are a lot of DOA-estimation methods which are 

capable to resolute two close signals located in one 

resolution interval according to the Rayleigh rule. Most of 

them can be related to subspace projection ones (as MUSIC, 

ESPRIT), their comprehensive description is given in [1-4]. 

The algorithms were investigated very closely for linear and 

circular antenna arrays (CAR) [3, 4]. Additionally, it is 

known that geometry of the antenna arrays may bound the 

DOA-estimation performances [5-7]. In particular the most 

important drawback of the linear antenna array is the only 

azimuth scanning. The planar antenna array was offered to 
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overcome the problem of the only azimuth direction finding. 

It can be used as azimuth as elevation direction finding. 

Moreover, circular and concentric circular arrays (CCA) 

were offered to scan in the two dimensions [8].  

II. MAIN DEFINITIONS 

Fig. 1 shows an arbitrary array consisting of N antenna 

elements randomly arranged in space. Considering a 

narrowband signal s(t) on carrier frequency ω0 having 

angular coordinates θ and ϕ relative to axes x and z 

respectively. Note that θ is an azimuth coordinate and ϕ is an 

elevation one. The signal can be expressed as [9]: 

 

 )cos~
0 v(t+ωu(t)=(t)s

 
 

As we can see from fig. 1, the delay depends on relative 

position of antenna elements and angular coordinates of the 

signals. If we take the origin as the reference point and ith 

element has coordinates (xi, yi, zi), then the delay τi of the 

signal at ith element relative to the origin can be expressed 

as [9]: 

 

 φz+θφy+θφxc=τ iiii coscossincossin1

 
 

As long as the signal is narrowband, then the delay τi 

produces the phase shift ξi = −τω0, that is 
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where λ is wavelength, ω0/c=2π/λ. And now, the signal at the 

array outputs can be described in the vector form as: 
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Fig. 1. Antenna array of arbitrary form. Red – signal source, Green – antenna 

elements 
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nnn

T

n )(x= z ,y ,r  is the radius-vector 

pointed to the n-th antenna element. 

For an arbitrary geometry configuration antenna array a 

complex output signal vector can be written as: 
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where  tx


 - describing output signals vector, )(ts


 - signal 

vector,  tn


 - noise vector, A  - matrix of steering vectors, 

mth column of the matrix describes phase distribution of mth 

signal source inside antenna array. 

Let’s assume, that )(ts


 and )(tn


 are stationary random 

processes, )(tn


 is the Gaussian random process with zero 

mean and a covariance matrix I
2 ( 2  - noise variance) 

and that the signals are uncorrelated and there is no 

correlation between noise and signals. Then spatial 

correlation matrix can be written in the following form: 
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where E[…] is the mathematical expectation, (…)H is the 

Hermitian transpose, )]()([ ttE H
ssS


  is the signal 

correlation matrix. 

The output signal is generated as a sum of several 

uncorrelated external signal sources and the thermal noise. 

In this case we get: 
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If the distinct signals are uncorrelated, the correlation 

matrix is as a sum of distinct correlation matrices of the 

signals and the noise: 
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where S - signals correlation matrix,
ip  - power of ith signal. 

As the rank of matrix 
H

ASA  is equal to M, then 
H

ASA  

has M positive eigenvalues, and the rest (N-M) ones are 

equal to zero. Let 
NN   121 ...  be eigenvalues 

of the correlation matrix R. Let ]e,...,e,e[  21s M


E  - 

orthonormal eigenvectors related to the M biggest 

eigenvalues ],...,,[  M21s   and ]e,...,e,e[  N2M1Mn


E  

be the matrix consisting of orthonormal eigenvectors related 

to the (N-M) smallest eigenvalues ],...,,[  N2M1M  n . 

Let us assume that [10]: 
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then it means, that 0n

H
EA . As the eigenvectors of the 

noise subspace are orthogonal to the columns of the steering 

matrix A, then the property matches the true coordinates of 

the signal sources   1

0
,





M

mmm  . Spatial spectrum of MUSIC 

is as [11]: 
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The numerator of (2) is equal to zero and function 

),( MUSICP  goes to infinity relating to the true   1
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III. PLANAR ANTENNA ARRAYS 

If an antenna array is not placed at the origin and starts from 

the origin at d, as show in fig. 2, then an array factor is [12]: 
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If an antenna array is rotated at angle φ0 (fig. 2b), then its 

array factor gets form [12]: 
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In order to calculate a planar array’s factor AFp, it is 

possible to make several combinations of rotated and moved 

copies of the linear antenna arrays. If the linear array’s factor 

placed along the x is designated, then by using the properties 

of the moved linear arrays (3) and (4) and combining them 

we can get an array factor of any shape array. 

The steering vectors and array factors are necessary to 

apply direction-finding tasks. However, the equation of a 

hexagonal arrays’ factor is very complicated [13], whereas 

an octagonal one has not been found at all. We can say that 

an arbitrary antenna array is a summation of several moved 

and rotated linear arrays. Let us consider building a 

hexagonal array out of 12 antenna elements. Provided that 

the first side consists of a linear antenna array and located 

along the x, its factor will: 
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Here N = 2 is the number of antenna elements along x-

direction. The linear antenna array should be rotated at 60° 
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Fig. 2. a) antenna moving, b) antenna rotating 
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and moved by 2d in order to calculate the second side’s 

factor. Using the properties (3) and (4), the second side’s 

factor is set as 

 

 




1

0

3/cossin4 N

=n

πθφjkndx
jk

2 e
d

e=AF

 
 

Side 3 is rotated at 120° and after that moved by the 

distance 2d in the direction 30° about the x axis in the same 

way. 
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The similar actions are carried out for the rest of the sides. 

As a result we get the hexagonal antenna array factor 

(AFHEX): 
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So using the approach helps to derive the octagonal 

array’s factor (AFOCT ) [14]: 
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By that way, it is very easy to derive array factor of an 

antenna array of any shape.  

IV. CIRCULAR AND CONCENTRIC ARRAYS 

In fig. 3 the CAR with radius r, consisting of N isotropic 

elements is depicted. The nth value of the steering vector 

),( a


 describing phase shifts of the signal arriving at the 

antenna array from direction θ – in azimuth and φ – 

elevation space in the Euclidean coordinate space, and can 

be written [8]: 
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where r is the radius; Nn 1 , 
mmk  /2 , 

m  is the 

wavelength of mth signal source. 

The geometry of concentric antenna arrays is built by 

means of several circular antenna arrays placed one into 

another. 

In fig. 4 H circular antenna arrays are depicted. Each 

antenna array has Kh antenna elements, where index h 

represents the number of corresponding circular array 

1≤h≤H. The circular antenna array can own different 

numbers of elements in its construction, so then it can be 

formed in different geometries. In the structure of each 

circular array rh is the radius of hth circular array and the 

angle between adjacent elements is equal to: 
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where kh = 0,1,…,Kh-1 and h = 1,2,…,H. So that, the phase 

in khth element of hth circular antenna array can be written: 
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Then the steering vector of mth signal source at hth 

circular antenna array in terms of azimuth and elevation 

angles and the position of the each element in the space 

takes the form: 
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The matrix of the steering vectors of hth CAR is written 

as: 
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Fig. 3. Circular antenna array 
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Fig. 4. Concentric antenna array  
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The matrix of the steering vectors of entire concentric 

antenna array can be defined as a combination of all the 

matrices of the steering vectors of each circular array with 

common phase center as a reference [8]: 
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In the case of M signal sources and the entire number of 

antenna elements N=(K1 + K2 + … + KH), the signal model 

at the output of the concentric antenna array remains similar 

to (1). The matrix of the steering vectors can be written in a 

more appropriate way [8]: 
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V. AMBIGUITIES 

In DOA estimation of narrowband signals in antenna arrays 

applications there are ambiguities appearing as a few 

identical responses of antenna array to distinct coordinates 

of signal sources. A well known example of ambiguities can 

be seen in linear antenna arrays and as a consequence 

several additional false peaks arise in a spatial spectrum. 

The problem of ambiguities greatly impacts on practical 

using and implementing DOA-estimation methods. In 

application of antenna arrays for wireless communication 

systems the question can be asked: how to design an antenna 

array according to specified performances of resolution and 

accuracy of DOA-estimation and without ambiguities 

(without false peaks). Another problem is how to predict 

false peaks arising in the spatial spectrum, which are caused 

by ambiguities of an antenna array. The problem can be 

developed and formulated: how to separate antenna 

ambiguities from those specific for DOA estimation 

algorithms. As we know, linear antenna arrays have 

ambiguities in two planes (such arrays have spatial spectrum 

peaks which are symmetric about the central axis). For linear 

antenna the ambiguities of this kind can be easily predicted 

[15]. The problem gets more complicated for more complex 

geometries of antenna arrays. 

Due to Schmidt [11], ambiguity I occurs 

when     jijjii  ,,,  aa . Ambiguity I characterizes 

the situation with one incident signal on the antenna array. 

From the geometrical viewpoint, ambiguity I occurs, when in 

the array manifold in M-dimensional space the steering 

vector (one or more) collinear with the incident signal 

steering vector arises. The incident signal steering vector is 

in theory perfectly orthogonal to the noise subspace and a 

great number of subspace based DOA estimation algorithms 

(such as MUSIC) reckon on. In the case of one incident 

signal, the incident signal steering vector spans the signal 

subspace the dimensionality of which is equal to one. The 

steering vectors in the arrays manifold which are collinear 

with the incident signal steering vector but which do not 

correspond to the actual DOA are also orthogonal to the 

noise subspace. So, false peak(s) in the spatial spectrum 

occurs due to ambiguity. But what happens when in the array 

manifold one or some steering vectors are not perfectly 

collinear to the incident signal vector. It is evident that they 

introduce high level sidelobes. The function characterizing 

ambiguity I may be formulated as [16]: 
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The function  jjii

I

ij  ,,,  is complex-valued, but its 

absolute values range from [0, 1]. Values 1 and 0 correspond 

to the perfect collinearity and absolute orthogonality of 

vectors i and j respectively. 

Consider a couple of variants of circular antenna arrays. 

Let’s assume, that we have CARs consisting out of six 

antenna elements with radiuses r=1.25λ and r=0.5λ. Let’s 

calculate the function  jjii

I

ij  ,,,  for the circular array 

in range of azimuth angles θ = [-150°; 150°] and elevation 

angle φ=70°. From fig. 5a it is seen, that for CAR with 

radius r = 1.25λ there are several combinations of perfectly 

collinear vectors. For example, they are for φ=70° and 

θ=30°, -90°, -30°, 90°, -150° and 150°, those vectors have 
I

ij  equal to one. Let us compute the spatial spectrum via 

MUSIC method to validate this combination. From fig. 6a it 

is seen, the peaks positions of CAR with r = 1.25λ coincides 

with the maximum values of the function
I

ij . Additionally, 

another considered geometry of CAR with r =0.5λ has not 

the false peaks in its spatial spectrum (fig. 6b). It can be 

clarified by 
I

ij  from fig. 5b, where there are no additional 

high values. Moreover, false peaks do not occur in the 

spatial spectrum of the concentric antenna arrays. And we 

can say that the situation is identical to circular antenna 

arrays with r = 0.5λ. 

Ambiguity II is characterized by multiple signal sources, 

so the ambiguities are important for mobile communication 

systems, when multiple signals simultaneously impinge onto 

the antenna array. Due to Schmidt [11], ambiguity II occurs 

when array manifold intersects the M dimensional signal 

subspace Es more than K times. In order to characterize type 

II ambiguity of arbitrary antenna array the ambiguity II 

function [17]: 
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Fig. 5. Function 
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ij  for CAR with radius a) r = 1.25λ and b) r =.5λ 
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Let’s assume that a concentric antenna array consists of 

two circular antenna arrays of three and four antenna 

elements respectively. Those arrays have radiuses 0.1443λ 

and 0.3536λ respectively. Two waves arrive at the array with 

coordinates θ1=20°, φ1=20° and θ2=45°, φ2=45°. From fig. 

7a it is seen, there are multiple false peaks (the arrows point 

them) close around the actual coordinates of signal sources. 

According to  ii

II

i  ,  depicted in fig. 7b, the ‘trace’ of 

maximums stretches from the first coordinate to another. 

The levels of the false peaks close to an actual coordinate 

can exceed the ones close to another coordinate. That makes 

impossible to filter the false peaks on the level. Additionally, 

occurring false peaks and their levels are random. 

Let us consider CAR of ten elements with inter-element 

distance 0.5λ and radius r = 0.809λ (‘CircArray-10’). 

Additionally, we may regard the concentric antenna array 

with two CARs out of four and six antenna elements, inter-

element distance is 0.5λ, r = 0.1769λ and r = 0.5λ (‘Circ-4, 

Circ-6’). We have simulated noise in the range of SNR -20 

to 0 dB to measure statistically the probability of occurring 

false peaks. Two signals impinge at the arrays with 

coordinates θ1=20°, φ1=20°, θ2=45°, φ2=45°. In this 

experiment we try to measure how often the false peaks 

 

 

 
(a) 

 
(b) 

 

Fig. 7. a) Method MUSIC and b) function χII for two signals in the 

circular array of the radius r =0.5λ. 
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(b) 

Fig. 6. Method MUSIC in the circular array of the radius a) r = 1.25λ, 

b) r =0.5λ when one signal arrives 
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Fig. 8. The number of false peaks occurrence in a) the circular and concentric antenna arrays for two signals from elevation angle φ=45°, b) the arrays for 

two signals from elevation angle φ=45°, c) the arrays for two signals from elevation angle φ=80° and d) the arrays for two signals from elevation angle 
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occur using different conditions and environments. While 

calculating the function (2), we increment the counter of the 

occurrence of false peaks in case it is possible to identify 

more peaks than the number of signals which is supposed to 

be known. The number of iterations is 500. As we can see 

from fig. 8a the number of false peaks occurring in the 

concentric antenna array DOA estimation by MUSIC is 

much higher than the value for the circular array. The 

difference is very large and reaches the value of about 100. 

The behavior is related to decreased space of aperture of the 

concentric array with the same number of antenna elements. 

Consider the concentric antenna array with a radius of the 

outer circular antenna array equal to one of the considering 

circular array, that is r = 0.809λ (‘Circ_a-4, Circ_6’). It is 

seen from fig. 8a that the concentric arrays with the same 

aperture as the circular one have the comparable the number 

of false peaks occurrence. And the number is very small, 

about 10. 

Consider the most known and used forms of antenna 

arrays, i.e. in addition to circular; we take hexagonal, 

rectangular and V-shaped antenna arrays. All the considered 

antenna arrays have the equal number of antenna elements, 

placed equally along their perimeters, i.e. twelve elements. 

Each side of the hexagonal array and the rectangular array 

consist of two and three elements respectively. They are 

spaced between each other by 0.5λ. After making a few 

algebraic operations it turns out that the circumscribed circle 

of each antenna array has almost identical radius r = (6/2π)λ. 

The V-shaped antenna array consists of two identical 

equispaced linear array with the common first element and 

an angle between them is equal to 45°. The range of the 

signal-noise ratio is from 20 dB up to 0 dB, the number of 

the averaging samples K of the spatial correlation matrix is 

100, the number of the iterations is 500. Consider the results 

received after simulation of two arriving signals. It is a more 

interesting case because in a real application (radars, 

wireless radio, etc.) there are multiple signals arriving at 

antennas. Again the simulation is done for three elevation 

angles to learn the dependence of the number of false peaks 

occurrence on the position in space. Azimuth coordinates are 

θ1 = 25°, θ2 = 45° for φ=45°, 80° and φ=30°. In Fig. 8b-d 

the following names for antenna arrays are used: Circular 

12- circular, Hex 12 - hexagonal, Rect 12 – rectangular, V 

12 – V-shaped. It is possible to make the several conclusions 

after viewing Fig. 8 b-d.  

The rectangular antenna array is the one most prone to 

false peaks creation. It has the largest number of false peaks 

occurrence. From fig. 8 b-c it is clearly seen that the 

rectangular configuration produces almost 100% probability 

out of 500 trials in the case of elevation angle φ=80° and 

higher than 10% in the case of signals position in the middle 

of elevation. Those numbers are much higher than the 

corresponding values of the other geometries.  

It can be surely said that the antenna array form less prone 

to producing false peaks is a V-shaped one. After viewing 

fig. 8 b-d the V-shaped antenna array of all the considered 

scenarios has the least amount of false peaks occurrence. 

Hexagonal and circular antenna arrays show similar numbers 

of all the cases. It should be noted that the signal position 

along z axis, which is the most prone to false peaks is close 

to φ=0°. The causes of the decrease in the number of false 

peaks, when SNR=0dB (case of circular and hexagonal 

antenna array) is under consideration. 

Consider how the false peaks of the method MUSIC in the 

researched planar antenna arrays are distributed on the 

spatial chart. We will use the same conditions as used in the 

earlier experiment, i.e. the signal sources have the following 

coordinates: in first case θ1=25°, φ1=30° and θ2=45°, 

φ2=30°; in second case θ1=25°, φ1=45° and θ2=45°, φ2=45°; 

in third case θ1=25°, φ1=80° and θ2=45°, φ2=80°. The peaks 

  
 (a) (b) 

  
 (c) (d) 

Fig. 9. False peaks distributions along spatial spectrum of MUSIC in a) Circular, b) Hexagonal, c) Rectangular and d) V-shaped antenna arrays 
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are displayed on the spatial plot if there are more than two 

peaks on the spatial spectrum of the MUSIC method in each 

separate case. In case there are only two peaks on the spatial 

spectrum of MUSIC, then these coordinates will not be 

depicted on the charts. In fig. 9 the false peaks coordinates 

are drawn for all the considered positions of the signal 

sources along the elevation plane and all the signal-noise 

ratios so as to give the whole picture.  

As we can see from fig. 9, the rectangular antenna array 

generates the distributions of the false peaks coordinates 

which can be hard to identify and relate to one of the true 

coordinates. Their occurrences are rather random and hardly 

predictable. So it can be said that direction of arrival 

estimation of the signal coordinates can be hardly 

implemented with high accuracy. 

If we consider the false peaks distributions generated by 

the rest of the antenna arrays, then it is obvious that their 

occurrence is basically treatable character and they lay in the 

vicinity of the true coordinates of the signals sources. These 

distributions can be easily processed by the clustering 

algorithms, for example k-means, after that inside each 

cluster a peak can be chosen with the highest value of the 

function (2) [18]. 

VI. CONCLUSION 

Planar antenna arrays, including circular, concentric and 

hexagonal, rectangular and V-shaped have been considered. 

These configurations allow estimating the directions of 

arrival of electromagnetic waves on azimuth and elevation 

planes. The math basis of the ambiguities of antenna arrays 

manifold has been considered as well. The phenomenon 

gives rise to several false peaks on the spatial spectrum 

along with the peaks pointing to actual signal coordinates. 

The probability of the occurring false peaks is measured by 

means of simulation of various noise environments. It is 

established that the more aperture, the less probability is. 

Additionally, the rectangular antenna array is the most prone 

to producing false peaks and V-shaped is the least. The 

rectangular antenna array’s peaks are hard to process in 

order to estimate the signal sources coordinates. If the signal 

source is placed close to 0° with respect to the z axis or 

perpendicular to the plane of a planar antenna array, the 

probability of occurring false peaks is very high.  
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