
 

 

Abstract— Wireless Sensor Network (WSN) refers to a group of 

locationally dispensed and dedicated sensors that observe and 

record physical and environmental conditions and coordinate 

the aggregated data at a centrical location. To serve new 

applications, localization is largely used in WSNs to define the 

current location of the sensor nodes. In this paper, first, the 

proposed mN/2 algorithms performance compared with GPS, 

3N, 3/2N and 3/2N(2) algorithms. The mN/2 algorithm is 

especially effective in very sparse networks where other 

algorithms usually fail. Even when the algorithm cannot locate 

a given node, it produces a polygonal estimate of the region in 

which the node is located. Monte Carlo simulations show that 

this algorithm performs better than other algorithms. Secondly, 

Uniform, Beta, Weibull, Gamma and Generalized Pareto 

distributed networks were used for localization using the mN/2 

algorithm. The localization performance of the networks are 

evaluated and compared using MATLAB simulations. 

 
Keywords— Graph-Theory, Localization, Probability 

Distributions, Wireless Sensor Networks. 

I. INTRODUCTION 

Technological developments in wireless systems allow for 

the emergence of sensor nodes that are cheap, capable of 

fulfilling multiple functions, and have low power 

consumption. A wireless network structure can be built by 

deploying a certain number of sensor nodes to a certain area. 

A typical Wireless Sensor Network (WSN) has basically two 

functions, including collecting information from each sensor 

node and processing this information according to the 

purpose of its intended use [1]. WSNs have extensive 

application areas. A WSN is used by rescue teams to locate 

and prioritize rescue requirements of avalanche victims [2], 

to monitor the vital signs of patients in hospital 

environments [3], to observe temperature where temperature 

change is important [4], in military applications [5], and 

many other areas.  

For all of WSN’s applications, the network needs to have 

the ability to determine the location of these sensor nodes for 

the purpose of managing the work of components properly. 

This situation reveals the localization problem within the 

sensor network. In the literature, various approaches have  
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been put forward to solve this problem.  Pandey et al. [6] 

constructed a localization table according to the energy of 

sensor nodes. Estimates on the distance between adjacent 

nodes are performed according to the energy available in the 

nodes. Kai et al. [7] presented a scalable range-free 

algorithm for localization in WSN. Their algorithm finds 

neighbor nodes by comparing Received Signal Strength 

(RSS) and estimates the location from these neighbors’ 

location. 

Some methods were developed based on graph theory for 

solving the localization problem. The use of graph-theoretic 

based notions in the localization of a sensor network is well 

described, and their importance from both the algorithmic 

and the analytic aspects is well demonstrated in recent 

research [8]-[9]. A feasible node localization scheme is 

presented by Liu et al. [9] incorporating the graph rigidity 

concept, and a new idea of B-N tree is introduced in the 

construction of a localizable collaborative body. Nussbaum 

et al. [10] considered the question of finding proper 

distance-preserving subgraphs, and the problem of 

partitioning a simple graph into an arbitrary number of 

distance-preserving subgraphs for clustering purposes. They 

also present a clustering algorithm called DP-Cluster, based 

on the notion of distance-preserving subgraphs. Vahidnia et 

al. [11] employed a new graph-theory and improved genetic 

algorithm based practical method to solve the optimal 

sectionalizer switch placement problem. A paradigm for a 

sensor network that tracks moving objects based on graph-

theoretic sensor signal sequences in the time domain was 

proposed by Zheng et al. [12]. It proved that a triangular 

grid can track an object with error limited to a small 
neighborhood. An enhancing node-robustness algorithm 

using node diversity is proposed in [13]. According to node 

vulnerabilities, this algorithm can mitigate the exploitation 

of these vulnerabilities and the propagation of concerning 

attacks. Nakayama et al. [14] introduced tie-set graph theory 

and its application to smart grid networks. In the literature, 

statistical analysis related to both localization and the energy 

problem in wireless sensor networks are available in many 

studies. Kamyabpour et al. [15] use statistical tools to 

analyze dependency between Wireless Sensor Network 

(WSN) parameters and overall energy consumption. In this 

study, three statistical approaches (linear and non-linear 

correlation, p-value) are implemented to the consequence of 

detecting phase to extract the most efficacious parameters on 

WSN comprehensive energy consumption. The distribution 

of range estimation error is analyzed by Rasool et. al [16] 

using both graphical and computational goodness of-fit 
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techniques, including empirical cumulative distribution 

function plotting, quantile–quantile plotting, probability 

density function plotting, kurtosis (K) test, skewness (S) test, 

linear correlation coefficient (γ) test, Anderson–Darling (A2) 

test and chi-squared (χ2) test. They proposed the range 

infiltration algorithm (RFA), which is based on the A2  test 

and filters out the range estimations with high errors. In [17], 

equipped with moments, the optimal fusion rule (OFR) 

distribution is approximated by Gaussian and Gamma 

distributions via moment mapping method. They showed 

that the Gamma distribution fits the OFR distribution to a 

high extent when compared with the Gaussian distribution. 

Tae Hong et al. [18] propose a new data filtering schema 

based on statistical data analysis. Through performance 

analysis, they show that the proposed schema does better 

than the Kalman filtering schema in terms of the number of 

messages transmission. In [19], the authors present the SA-

TC algorithm for detecting and defending against this 

serious threat. It is based on the on-demand multi-path 

routings and uses statistical analysis and time constraint to 

identify the suspected links. Tsai et al. [20] report different 

aspects of a statistical analysis of four representative in-car 

wireless channels based on the received power data collected 

from a Binary Phase Shift Keying (BPSK) transmission 

experiment. They used Rayleigh, Log normal, Nakagami, 

Rice, and Weibull distributions in their study. 

Lastly, a uniformly distributed network was used to 

localize the target nodes while mN/2 algorithm was being 

run. In this paper, in addition to the use of the Uniform 

distributed field for observing mN/2 algorithms 

performance, Beta, Weibull, Gamma and Generalized Pareto 

distributed networks were also used for localization. The 

localization performance of the networks were evaluated and 

compared using MATLAB simulations. 

II. PROPOSED MN/2 ALGORITHM 

A. Chains 

In this section, a new concept of specific multi-hop paths 

called chains is introduced. They are helpful for the 

construction of polygons which are used in the calculation of 

the final resultant polygonal area. Dijkstra’s algorithm [8] 

finds the shortest paths from the target node to every other 

node in the graph containing target nodes. If two such 

anchor nodes A1 and A2 exist and an optimal multi hop 

shortest path that connects the  first anchor A1 through the 

target node to the second anchor A2, then A1 –S (target 

node) - A2 is called a chain, as illustrated in Fig. 1. It is 

assumed that there are multiple hops from A1 - S (target 

node) and also multiple hops from S (target node) - A2. Two 

circles are constructed at the center of the anchor locations 

A1 and A2 and with radii R1 and R2 respectively. R1 and R2 

are the multi-hop distances from the target node to the 

anchor nodes A1 and A2 respectively. 

 

 

Fig. 1.  Chains 

In Fig. 1, there are 5 anchor nodes A1,…,A5 the target 

node S; and intermediate nodes B1,…,B6. The shortest paths 

from S to all nodes are shown in Fig.1. Based on this node 

placement, there are 10 chains can be constructed as shown 

in Table 1. 
TABLE I 

CONSTRUCTED CHAINS FOR NODES SHOWN IN FIG.1 

Chain 

Number 
Circle (Center, Radius) 

1 

Chain 2211 ABSBA   

1st Circle  | |)| || || |,( 1111 SBBAA   

2nd Circle | |)| || || |,( 2222 SBBAA   

2 

Chain 3311 ABSBA   

1st Circle  | |)| || || |,( 1111 SBBAA   

2nd Circle | | )| || || |,( 3333 SBBAA   

3 

Chain 46411 ABBSBA   

1st Circle  | |)| || || |,( 1111 SBBAA   

2nd Circle | |)| || || || || |,( 446644 SBBBBAA   

4 

Chain 45411 ABBSBA   

1st Circle  | |)| || || |,( 1111 SBBAA   

2nd Circle | | )| || || || || |,( 445555 SBBBBAA   

5 

Chain 3322 ABSBA   

1st Circle  | |)| || || |,( 2222 SBBAA   

2nd Circle | | )| || || |,( 3333 SBBAA   

6 

Chain 46422 ABBSBA   

1st Circle  | |)| || || |,( 2222 SBBAA   

2nd Circle | |)| || || || || |,( 446644 SBBBBAA   

7 

Chain 55422 ABBSBA   

1st Circle  | |)| || || |,( 2222 SBBAA   

2nd Circle | | )| || || || || |,( 445555 SBBBBAA   

8 

Chain 46433 ABBSBA   

1st Circle  | | )| || || |,( 3333 SBBAA   

2nd Circle | |)| || || || || |,( 446644 SBBBBAA   

9 

Chain 55422 ABBSBA   

1st Circle  | | )| || || |,( 3333 SBBAA   

2nd Circle | | )| || || || || |,( 445555 SBBBBAA   

10 

Chain 554644 ABBSBBA   

1st Circle  | |)| || || || || |,( 446644 SBBBBAA   

2nd Circle | | )| || || || || |,( 445555 SBBBBAA   

 

If there are NA anchor nodes, then the following number 

of chains can be calculated.  
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If 100 anchor nodes exist that are connected, one must 

check about (100×99)/2=4950 chains. Note that the 

intersection can be computed recursively at a great reduction 

in computational complexity. 

Let 1

jC and 2

jC  be the two circles defined by Chain j. 

Note that if the two circles x

jC 1
and x

jC 2
(where x means Do 

Not Care) are centered on the same anchor Ak then they are 

the same circle because the radius is simply the sum of the 

distance of the nodes along the shortest path that connects S 

to some anchor Ak where k=1,2,…,n. Then the target will be 

ultimately located with the region 
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The optimal path j

k

jj bbb  ...10
denotes the shortest 

path from the anchor j

j bA 0  to the target j

LibS 
 where 

there are Lj intermediate nodes 
11,... Ljbb . 

In short, if there are NA anchor nodes that are connected 

in a graph-theoretic multihop manner to the target S; then S 

can be localized in the intersection of  NA circles. 

Computationally, the algorithm proceeds by 

approximating each circle using a regular polygon Pj : 

1. Initilialize U(1)=Polygon(A1,d1) 

2. For j=2:NA 

a) U(j)= U(j-1) ∩ Polygon(Aj,dj) 

B. Polygons and Their Intersections 

The intersection of these circles (Ai, di) where Ai is the 

absolute location of the anchor node and the di is the multi-

hop distance that forms the radius of the circles that can be 

approximated as a polygon in which the target node must be 

present (target node, Ai1, Ai2, …, Ain ). Here, n is the number 

of all anchor nodes to which the target node is connected. In 

the node detection step, the proposed algorithm computes 

the intersection of polygons, and involves the final decision 

making where one/ both the candidate locations are 

inside/outside the polygonal area as shown in Fig. 2. 

 
Fig. 2.  The resultant polygonal area of the node location formed by the 

intersection of the polygons. 

If one of the candidate locations are found to be inside 

the resultant polygonal area, then that candidate is deduced 

to be the actual location of the node. If both candidates are 

found to be inside the resultant polygonal area, the 

ambiguity cannot be cleared. 

All the polygons are convex. This significantly simplifies 

the computation of the intersections, since the boundaries of 

two convex polygons can not intersect non-trivially more 

than twice. A simple algorithm is to start at one vertex of the 

first polygon which is inside (or outside) the second polygon 

and march through adjacent vertices of the first polygon 

until the boundary of the second polygons is crossed twice. 

If the marching comes back to the initial node without 

crossing the boundary, then the two polygons do not 

intersect. 

mN/2 algorithm employs a multi-hop, cooperative, graph-

theoretic based localization approach to localize many nodes 

that would otherwise remain unlocalized. It first follows the 

procedure similar to the one used by Barbeau et al. [21], of 

using two anchor nodes to find the two candidate locations, 

and then moves on to resolve the ambiguity and to eliminate 

the false candidate location using the other anchor nodes’ 

locations and their multi-hop distances. The neighboring 

nodes that are employed in mN/2 algorithm contain a 

mixture of in-range but unlocalized nodes, and the anchor 

nodes that are multiple hops away. The algorithm consists of 

following steps: 

1. Compute the shortest paths from each of the target 

nodes to a priori known anchor nodes locations with 

well known Dijkstra algorithm [8]. 

2. Generate circles centered at all anchor nodes that are 

K- hops away, and whose radii are bounded by a KR, 

where R is the shortest distance from the target node 

under consideration to the anchor. 

3. Intersect the generated polygons to compute the 

resultant polygon. 

4. Clear the ambiguity of which candidate location is the 

actual target node depending on whether one 

candidate/both candidates are inside/outside the 

resultant polygonal area. 

 

III.  FIELDS IN DIFFERENT DISTRIBUTIONS 

A. Uniform Distribution 

One of the easiest continuous distributions in all of statistics 

science is the continuous uniform distribution, and this 

distribution was used for different applications. In [22], a 

method for measuring the productivity level of a decision 

making unit when it is in a negative situation, as well as 

estimating the productivity using uniform distribution, is 

shown. In [23], for a directed graph whose underlying 

undirected graph is tidy, the authors demonstrated that 

whether the uniform distribution on the vertices of the graph 

is an immobile distribution depends on a local characteristic 

of the graph, namely if (u, v) is a directed edge, then out-

degree (u) is equal to in-degree (v).  

This distribution is characterized by a density function 

that is “flat” and thus the probability is uniform in a closed 

interval, say [A,B]. The density function of the continuous 

uniform random variable X on the interval [A, B] is  

 

 

















elsewhere,0

,
1

)(

BxA
AB

xf
. (4) 

 

The density function composes a rectangle with base B−A 

and height 1/B-A. As a result, the uniform distribution is 

generally called the rectangular distribution [24]-[25]. Note, 

however, that the interval may not always be closed: [A, B]. 
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It can be (A, B) as well. The density function for a uniform 

random variable on the interval [1, 3] is shown in Fig. 3. 

 

Fig. 3.  The density function for a random variable on the interval [1, 3] 

[24]. 

The mean and variance of the uniform distribution [25] are 
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Fig. 4. shows Uniform distribution of 100 nodes. Blue 

circle nodes and red square nodes represent position-aware 

and non-position-aware nodes, respectively. 

 
Fig. 4.  Uniform distribution of 100 nodes  

 

B. Beta Distribution 

A beta function is defined by 
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where )( is the gamma function. 

The continuous random variable X has a beta distribution 

with parameters α >0 and β>0 if its density function is given 

by 
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Note that the uniform distribution on (0,1) is a beta 

distribution with parameters  1  and 1 .  

 The mean and variance of a beta distribution with 

parameters α and β are 
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respectively [4]. 

The beta distribution is a probability distribution described 

in an interval [0 1], parameterized by two shape parameters 

α and β. The beta distribution has an advance over other 

probability distributions in that its domain is bounded and it 

procures various shapes depending on its parameters: flat, 

convex, concave and slanted. When α = β, the distribution is 

symmetric about x = ½ [26]. 

  Fig. 5. shows Beta distribution of 100 nodes. Two 

parameters of Beta function, α and β, are choosen as 4 and 2 

respectively. Asymmetric distributions are obtained by 

choosing alpha and beta to be different.  

 
Fig. 5.  Beta distribution of 100 nodes  

C. Weibull distribution 

Modern technology has enabled engineers to design many 

sophisticated systems whose process and safety depend on 

the reliability of the several components making up the 

systems. For example, a steel column may buckle, a fuse 

may burn out, or a heat-sensing device may fail. Alike 

components subjected to alike environmental situations will 

fail at different and imponderable times [25]. Weibull 

Statistical Distribution is also a prevalent method for 

examining wind speed measurements and specifying wind 

energy potential. Weibull probability density function can be 

used to predict wind density, wind energy potential, and 

wind speed [27]-[29].  

  The continuous random variable X has a Weibull 

distribution, with parameters α and β, if its density function 

is given by 
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where α, β>0. 

The graphs of the Weibull distribution for α = 1 and 

various values of the parameter β are illustrated in Fig. 6. It 

can be seen from the figure that the curves change highly in 

shape for different values of the parameter β. If β = 1 taken, 
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the Weibull distribution changes to the exponential 

distribution. For values of β > 1, the curves become 

somewhat bell shaped and look like the normal curve but 

display some curvature. 

 

 
Fig. 6.  Weibull distributions (α = 1) [24]. 

 The mean and variance of the Weibull distribution are  
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Fig. 7 shows Weibull distribution of 100 nodes. This 

distribution has two parameters which k > 0 is the shape 

parameter and λ > 0 is the scale parameter of the 

distribution. k and λ are chosen as 1 and 0.12 respectively 

for this simulation. 

 
Fig. 7.  Weibull distribution of 100 nodes 

D. Gamma Distribution 

The gamma distribution derives its name from the well-

known gamma function, studied in many areas of 

mathematics. The gamma function is defined by 
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 The continuous random variable X has a gamma 

distribution, with parameters α and β, if its density function 

is given by  
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where α>0 and β>0 [25]-[30]. 

 Graphs of several gamma distributions are shown in Fig. 

8. for certain determined values of the parameters α and β. 

The special gamma distribution for which α = 1 is called the 

exponential distribution [25]. 

 

 
Fig. 8.  Gamma distributions [24] 

Fig. 9 shows Gamma distribution of 100 nodes. 

 

Fig. 9.  Gamma distribution of 100 nodes 

E. Generalized Pareto distribution 

The Generalized Pareto distribution introduced by 

 

 0,1)(
/)( 0 

 qq
eqF  (13)  

 

 0)1(1)( /10 


 


 qq
qF , (14) 

where  is the scale parameter,  is the shape parameter, 

and 
0q  is the threshold [31]. 

Fig. 10. shows Pareto distribution of 100 nodes. Three 

parameters of Pareto function, tail index (shape,  ), scale 

parameter and threshold (location) parameter 
0q , are 

chosen as 0.1, 0.1 and 1 respectively. When 0 and theta 

is equal to  / , the Generalized Pareto is equivalent to the 

Pareto distribution. 
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Fig. 10.  Pareto distribution of 100 nodes 

IV. SIMULATION RESULTS 

The proposed graph-theoretic algorithm is found to be 

extremely effective in anchor-sparse environments. In an 

anchor-sparse environment, the availability of anchor nodes 

is minimal, even if the actual target nodes density is 

significant. 

 In the example presented, a particular field topology is set 

up in simulation. Extensive simulations are conducted in an 

environment similar to the one created by Barbeau and 

Kranakis [21]. The sensors are spread in a unit square 

independently with uniform distribution. The reachability 

range of each node is as given by the Eq. (15).  

 

 
n

cknkn
r




)!log(logloglog . (15) 

 

The constants k and c are given a value of 1 and  n is the 

number of deployed nodes in the network. The square field 

of 100x100 units, a communications range of 15% units of 

the side dimension of the field, and an average anchor 

density of 9% of total nodes is assumed. Simulations show 

that 3 Neighbor algorithm and 3/2 Neighbor algorithm are 

unable to find any target nodes as shown in Fig. 11. 

 

 

 

Fig. 11.  3N and 3/2 N  algorithms fail to find any nodes 

 When the proposed algorithm is exclusively run on this 

field signature, it helps localize eight target nodes due to its 

inherent capability. Using other target nodes as intermediate 

nodes utilizes its cooperative multi-hop localization 

technique, shown here as green nodes in Fig. 12. 

 

 
Fig. 12.  The proposed algorithm succeeds in finding eight nodes. 

The Monte-Carlo simulation is run 200 times with 

different field signatures and the results are averaged for 

each network size. The proposed mN/2 algorithm 

outperforms other algorithms by almost 200% which is 

expected due to the inherent capability to use the target 

anchor nodes in the chains mentioned before in the multi-

hop cooperative localization of the nodes. It provides the 

position estimates in an extremely sparse environment of 

only containing 9% of the anchor nodes on average. Fig. 13 

shows the results of the simulation of 10 to 50 node 

networks run 200 times for each network size. 

 
Fig. 13.  An average of 9% anchor nodes present in the field  

 

In anchor-dense environments, the availability of the 

anchor nodes is relatively high, as in the scenario of 28% 

anchor nodes of the total nodes shown in Fig. 14. The mN/2 

algorithm showed an improvement of 25%-30% more nodes 

localized, compared to other algorithms. 

 
Fig. 14.  An average of 28% anchors nodes present in the field 
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 Uniformly distributed network was used to localize the 

target nodes to observe the mN/2 algorithms performance. 

But in this paper, Uniform, Beta, Weibull, Gamma and 

Generalized Pareto distributed networks were used for 

localization, and the localization performance of the 

networks are evaluated and compared using MATLAB 

simulations. Fig. 15 is produced by varying the number of 

total nodes from 10 to 50 for a dynamic communication 

range depending on the number of total nodes for uniform 

distribution. X-axis is the number of nodes and y-axis is the 

percentage of target nodes localized. mN/2 algorithm is run 

on Beta, Weibull, Gamma and Pareto distributed 

environments, as shown in Fig. 16, Fig. 17, Fig. 18 and Fig. 

19 respectively. Generally, for all of the distributions, mN/2 

algorithm has better results in the 28% anchor percentage 

distributed fields than in the 9% anchor percentage 

distributed fields. And with the increasing number of nodes, 

the localization performance of mN/2 algorithm increases 

for all of the distributions.   

   
Fig. 15.  Percentage of target nodes localization for uniform distribution 

 

 

 
Fig. 16.  Percentage of target nodes localization for beta distribution 

 

 
Fig. 17.  Percentage of target nodes localization for weibull distribution 

 

 

 
Fig. 18.  Percentage of target nodes localization for gamma distribution 

 

 

 
Fig. 19.  Percentage of target nodes localization for pareto distribution 

 

 

Fig. 20 and Fig. 21 show the comparison of 5 distributed 

environments with different number of nodes. Among all 

distributions, localization of Pareto distributed nodes shows 

the best result for all simulations. 
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Fig. 20.  Comparison of distributions with varying number of total nodes 

for 9% anchor nodes 

 

 
Fig. 21.  Comparison of distributions with varying number of total nodes 

for 28% anchor nodes 

V. CONCLUSION 

A novel graph-theoretic, cooperative, multi-hop localization 

algorithm is proposed in this work. It can resolve several 

ambiguities as to the localization of nodes, and is vastly 

superior when in sparse networks. Detailed Monte-Carlo 

simulation on the same sensor field distributions have shown 

an excellent performance of the proposed anchor-sparse 

environments, where other well known algorithms fail to 

produce meaningful results. In very low anchor-density 

networks, the proposed algorithm showed close to 200 

percent localization improvement over 3N and 3/2N 

algorithms.  Moreover, the proposed algorithm can produce 

polygonal estimates of the locations of all nodes, even if 

those nodes are not locatable theoretically. And secondly, 

the mN/2 algorithm is tested on an environment created with 

Uniform, Beta, Weibull, Gamma, and Pareto distributions. 

Generally, for all the distributions, mN/2 algorithm has 

better results in the 28% anchor percentage distributed fields 

than in the 9% anchor percentage distributed fields. And 

with the increasing number of nodes, the localization 

performance of mN/2 algorithm increases for all the 

distributions. Among all distributions, localization of Pareto 

distributed nodes shows the best result for all simulations. 

The sensors that detect the movements of the objects are not 

considered in this paper. They will be addressed in future 

work. 
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