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Abstract—This paper introduces a novel age estimation method
using a new texture descriptor Weber Local Descriptor (WLD).
This texture descriptor is analyzed in depth for age estimation
problem. In the study, the multi-scale versions of holistic and
spatial WLD (SWLD) descriptors are used to extract the age
related features from normalized facial images. After finding a
lower dimensional feature subspace, age estimation is performed
using multiple linear regression. In addition the age estimation
accuracy of each of the distinct and intersection block used in
spatial texture extraction are investigated. Experiments on FG-
NET, MORPH and PAL databases have shown that similar age
estimation performances can be obtained by using more effective
blocks in spatial histogram generation. This also provides us to
reduce the number of features and computational cost.
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I. INTRODUCTION

Facial age estimation has been demanding growing attention
recently because of its real world applications such as, internet
access control, age-specific target advertising, face recognition
systems robust to age progression, and age prediction systems
for finding the lost children and criminals.

Age estimation is the process of associating a facial image
automatically with exact age or age group. The suitable
facial image representation is crucial in age estimation, as
the success of the classifiers depends on the adequacy of
the feature domain [1]. For this reason the selection of facial
features related with aging is very important for age estimation
systems design. But the variations on different individuals
faces are not the same during their life span. Real world age
progression is personalized as shown in Fig. 1 such that is
it related with living styles, eating habits, climate, etc. Also
factors such as genetics, race, frequency of facial expressions,
anti-aging product usage affects the facial appearance [2].
Another challenge in age estimation systems is the availability
of a good aging database. As aging is a slow process, a
large aging database, especially containing the chronometrical
image series of individuals is hard to collect.

Age estimation approaches generally comprises feature ex-
traction and estimation phases. In feature extraction phase,
shape-based and texture-based methods are used for efficient
facial image representation. In the second phase, classification
and regression methods or hierarchical classifiers are utilized
to perform age estimation. Kwon and Lobo published the first
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Fig. 1. Face aging of different individuals (Marie Curie, Charlie Chaplin
www.gettyimages.com)

work for age classification [3]. They have calculated distance
ratios between facial features [4] based on face anthropometry
and extracted wrinkle information using snakelets, to classify
facial images into three groups: babies, young and senior
adults. Later on age classification methods using the geometri-
cal features and texture features extracted with different image
filters are also proposed [5], [6].

Lanitis et al. [7] initially proposed using Active Appearance
Models (AAM) for age estimation. With the usage of AAMs
the shape and appearance information of facial images are
joined together and a parametric description is obtained.
Then an aging function defining the relationship between
the parametric description and the age of the individual is
built. After their method, AAMs are frequently used in age
estimation frameworks [8], [9]. In some studies AAM features
are extracted as global facial features and fused with local
facial features for efficient age estimation [10]. In Geng et
al.s approach [11] a unique aging pattern is learned from
the sequence of facial images sorted in temporal order for
each individual. On the contrary, a common aging pattern is
learned from the images of different individuals at different
ages by using manifold embedding techniques in some age
estimation approaches. The mapping from the image space to
the manifold space can be done either by linear or by nonlinear
functions [12], [13]. Also extraction of aging related facial
features using various methods such as edge detection meth-
ods, Gabor filters, Local Binary Patterns (LBP) is explored
in many studies [10], [14]–[17]. Both the global and features
extracted from the whole image and local features extracted
from image blocks or facial regions (forehead, eyes, cheeks,
etc.) are used for age estimation. Recently, deep learning
methods and dynamic age groups are used in age estimation
studies [18]–[21].

In this paper a novel age estimation method using textural
properties of facial images is introduced. The idea of using
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Fig. 2. Age estimation system

texture information of facial images is not new, however we
use a new texture descriptor Weber Local Descriptor (WLD)
[22] which has not been analyzed in depth for age estimation.
The block diagram of age estimation system is shown in Fig. 2.
In our method, the original facial images are normalized so
that the orientation and the size of faces are adjusted and
only the facial region is extracted. Then multi-scale and spatial
WLD (SWLD) descriptors are used to extract the age related
features from normalized facial images. After dimensionality
reduction with Principal Component Analysis (PCA), multiple
linear regression is used to estimate the specific age.

The main goal of the study is to analyze deeply the age
estimation performance of a new texture descriptor (Weber
Local Descriptor-WLD) which extracts both the edges and the
directions of edges. This analysis is performed on 3 different
databases with different characteristics for different scenarios.
Thus, multi-scale and spatial features for different parameter
values are extracted to find the optimum parameters, block size
and scale for a general age estimation system. Also the age
estimation accuracies of face blocks used in spatial histogram
generation are analyzed separately for finding the blocks which
contribute mostly to age estimation process. The aim is to
obtain more accurate systems by using these blocks, also
reduce the number of features and computational cost.

The rest of the paper is organized as follows. The pro-
posed age estimation approach is explained in Section II. In
Section III the experimental results on various databases are
reported and analyzed. Finally, the conclusions are outlined in
Section IV.

II. PROPOSED METHOD

The proposed method consist of image normalization, spa-
tial and multi-scale WLD histogram extraction, dimension-
ality reduction, age estimation modules. These modules are
explained in detail in the following subsections.

A. Image Processing

The orientation and the size of original images are different
from each other as shown in Fig. 3(a). Besides, the original
images have unnecessary features such as background, cloth
and hair which are not related to the face and can affect
the performance of the algorithm. Therefore, the images are
rotated, scaled and cropped to extract only the facial regions
and to adjust the orientation and size of the faces. (Fig. 3(b)).
To adjust the orientation, the images are rotated using the angle
of the line between the eye centers. Then the sizes of facial
images are adjusted by scaling (up or down) and the distance
between the eye centers is 50 pixels. Finally the scaled images
are cropped to the size of 88 × 88 pixels using the eye center
positions. For this reason the sizes and the eye center positions

(a) (b)

Fig. 3. Image preprocessing: (a) original images, (b) normalized images

of the normalized images are the same and only the facial
region is obtained.

B. Feature Extraction with WLD

WLD [22] is based on the fact that human perception of a
pattern depends not only on the amount of change in intensity
of a stimulus (such as sound, lighting) but also on the original
intensity of the stimulus. According to Webers law, the change
of a just noticeable stimulus is a constant proportion of the
original stimulus. Basically, WLD consist of two components:
differential excitation (ξ) and orientation (θ). With the dif-
ferential excitation component local salient micropatterns are
extracted. Then statistics are built on these patterns along with
the gradient orientation of the current point. Consequently
WLD has the ability for detecting edges perfectly, which
are very important for age estimation. Additionally, when
compared to LBP [23], a powerful texture (bright/dark spots,
edges, flat areas) descriptor used frequently in age estimation
systems, WLD not only uses the local intensity variations to
extract the edges, also uses the gradient orientations to describe
the direction of edges.

1) Differential Excitation: The differential excitation ξ(xc)
of a current pixel xc is computed as:

ξ(xc) = arctan

[
v00s
v01s

]
, (1)

where v00s =
∑p−1

i=0 xi − xc, xi(i = 0, 1...p−1) denotes the i-
th neighbors of xc, p is the number of neighbors, and v01s = xc.

2) Orientation: The orientation component of WLD is the
gradient orientation, which is computed as:

θ(xc) = arctan

[
v11s
v10s

]
, (2)

where v11s is the intensity difference of the two pixels on the
left and right of the current pixel xc and v10s is the intensity
difference of the two pixels directly below and above of the
current pixel xc. After mapping θ ∈ [−π/2, π/2] to θ′ ∈
[0, 2π], it quantized into T dominant orientations as follows:

Φ =
2t

T
π, t = mod

(∣∣∣∣ θ′

2π/T
+

1

2

∣∣∣∣ , T) . (3)

3) WLD Histogram: In this step 2D histogram
WLD(ξj ,Φt), (j = 0, 1..., N − 1, t = 0, 1..., T − 1) is
computed where N is dimensionality of an image and T is
the number of dominant orientations.

To obtain a more discriminative descriptor the columns
of WLD(ξj ,Φt) are projected into 1D histograms Ht, t =
0, 1..., T − 1. Subsequently each Ht is evenly divided into M
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segments, H(m,t), (m = 0, 1...,M − 1). Furthermore each
sub-histogram segment H(m,t) is composed of S bins, i.e.
H(m,t) = {hm,t,s}, s = 0, 1...S−1. Then these sub-histogram
segments (H(m,t)) form a histogram matrix where each column
corresponds to a dominant direction Φt. Each row of this
matrix is concatenated as a histogram which is referred as
WLD descriptor. The size of WLD descriptor is T ×M × S.
In the study, age estimation accuracy of the WLD descriptor
is analyzed using different values for T , M and S parameters
(T = 4, 8; M = 4, 6; S = 3, 5, 7, 9). In the experiments
2× 2× 4 = 16 different parameter combinations are used for
finding the optimum values.

4) Multi-scale WLD Histogram: Original WLD histograms
are extracted from the 3 × 3 neighborhood [22]. Multi-scale
WLD histograms are computed using a square symmetric
nighbor sets of P pixels placed on a square whose sides
have the length (2R + 1) as shown in Fig. 4. The WLD
operator is denoted as WLD(P,R) where P is the number
of neighbors and R determines the spatial resolution of the
operator. Multi-scale analysis is performed using 3 different
scales (P = 8 R = 1, P = 16 R = 2, P = 24 R = 3) in
the study. This means that 48 (16× 3) different scenarios are
used in the experiments for finding the optimum parameters
and scale.

5) Spatial WLD Histogram:
The basic WLD descriptor represents an image as a

histogram of differential excitations organized according to
dominant gradient orientations. In this histogram differential
excitations are collected according to their values and gradient
orientations regardless of their spatial location. Consequently,
two different regions in an image with similar differential
excitations and gradient orientations will contribute to the
same bins in the histogram, and will not be discriminated
by WLD descriptor . To enhance the discriminatory power of
WLD descriptor, each image is divided into number of blocks,
WLD histogram for each block is computed and then these
regional histograms concatenated to form a SWLD descriptor.
Unfortunately, as a result of discrete evaluation of the blocks,
some related information between the blocks may not be
completely captured. To obtain these features, the intersection
blocks obtained by combining the centers of discrete blocks
are also used in spatial histogram generation. The features ex-
tracted from discrete and intersection blocks are concatenated
to form a more discriminative SWLD histogram.

In the study age estimation performance of the texture
descriptor is deeply analyzed by using 5 different block
configurations (1 × 1, 2 × 2, 4 × 4, 8 × 8, 8 × 8+) for each

Fig. 4. Square symmetric neighborhood for different (P,R)

parameter and scale scenario. For this reason the results are
obtained for 240 (48 × 5) different states. Also 3 databases
which have different characteristics are used to determine the
parameter values of the texture descriptor (T , M , S, scale
and block size) to conduct a general age estimation system.
In addition the age estimation accuracies of the blocks used
in spatial histogram generation are analyzed separately for
finding the blocks that contributes mostly to the age estimation
process.

C. Dimensionality Reduction

After SWLD histogram generation, PCA is performed on
these feature vectors to find a lower dimensional subspace
which carries significant information for age estimation. The
PCA method finds the embedding that maximizes the projected
variance given below:

Wopt = arg max
||W=1||

WTSW. (4)

in (4) S =
∑n

i=1 (fi − f̄)(fi − f̄)T is the scatter matrix, fi
is i-th feature vector and f̄ is the mean vector. Solving this
problem, a set of d eigenvectors associated to the d largest
eigenvalues of S is obtained. Then dimensionality reduction
is performed by calculating yi = WT fi which gives the low
dimensional representation of feature vectors.

D. Regression

In our study, we define the age estimation problem as a mul-
tiple linear regression problem as age = f(M)⇔ L̂ = f̂(Y ),
where L̂ denotes the estimated age label, f(·) the unknown
regression function, and f̂(·) is the estimated regression func-
tion. The matrix formulation is given by L = Ỹ B where L is
the age label vector and Ỹ is the matrix of observed values. B
is the unknown parameter vector which we need to estimate
during the learning stage by ordinary least squares or robust
regression. The aging function used in this study is a linear
function given in l̂ = β̂0 + β̂T

1 y, where l̂ is the estimate of
age, β̂0 is the offset, β̂1 is the weight vector and y is low
dimensional representation of the extracted feature vector.

III. EXPERIMENTS AND RELUTS

In this paper the FG-NET, MORPH and PAL databases are
used to evaluate the performance of the proposed method.
The FG-NET aging database [24] includes 1002 images of
82 individuals with uncontrolled head pose, facial expression
and illumination. The MORPH database [25] consists of 1690
images taken from 515 subjects. The PAL database [26]
contains 580 images with different facial expressions, captured
under natural lighting conditions. The data distributions of FG-
NET, MORPH and PAL databases according to age are given
in Fig. 5. Also the age ranges of the databases can be seen
from the graphics.

The performance of the proposed method is evaluated
using 3-fold cross validation. First the samples are randomly
partitioned into 3 equal sized subsamples. Then one subsample
is retained as test set and two subsamples are used as training
set. This procedure is repeated three times with each of the
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Fig. 5. The data distributions of FG-NET, MORPH and PAL databases

TABLE I
THE NUMBER OF TRAINING/TESTING SAMPLES USED IN EACH FOLD OF

EVALUATION METHOD

Database # of training images # of testing images
FGNET 668 334
MORPH 1127 563
PAL 387 193

three subsamples used exactly once as test set. The results are
then averaged to produce a single estimation. The number of
testing/training images used is each fold of cross validation
scheme is given in Table I.

The performance is measured using the Mean Absolute
Error (MAE) metric given as:

MAE =

Nt∑
i=1

|l̂i − li|/Nt, (5)

where l̂i is the estimated age value of i-th test sample, li is the
real age value of i-th test sample, and Nt is the total number
of test samples.

In the experiments the age estimation performances of
multi-scale WLD descriptors are calculated for various com-
binations of T , M and S parameters. The multi-scale WLD
operator, WLDP,R (P is the number of neighbors, R is
the distance between the neighbors and the center pixel) is
applied in 3 different scales: WLD8,1, WLD16,2 and WLD24,3.
Experiments are performed for T = 4, 8, M = 4, 6 and
S = 3, 5, 7, 9 for finding optimal age estimation accuracies.
Firstly the WLD histograms are extracted from the whole

images (1 × 1) and age estimation is performed using these
holistic texture descriptors. Then the images are divided into
various number of blocks and SWLD histograms are extracted
from these blocks. As the image size is 88 × 88 after image
normalization step, we divided them into 2× 2 blocks (block
size is 44 × 44 pixels), 4 × 4 blocks (block size is 22 × 22
pixels) and 8 × 8 blocks (block size is 11 × 11 pixels),
extract WLD histograms from each block and concatenated
them to form spatial texture descriptor. Besides, according
to the proposed spatial histogram generation approach, the
WLD histograms extracted from 8 × 8 blocks and 7 × 7
blocks obtained by combining the centers of these 8 × 8
blocks are concatenated to enhance the discriminative power
of descriptor. The results of all experiments are tabulated
in Table II. In the table WLDP,R is the multi-scale WLD
operator used in the experiments. The result are obtained using
P = 8 R = 1, P = 16 R = 2 and P = 24 R = 3
(WLD8,1, WLD16,2 and WLD24,3). According to the results
the best age estimation accuracies for FGNET, MORPH and
PAL databases are obtained with WLD8,1 operator. Also the
accuracies obtained with the parameters T = 8 and M = 6
are better than the other combinations for all databases. It
can be seen from the table that age estimation accuracies of
WLD8,1, histograms for MORPH database are the same for
parameters T = 8 M = 6 S = 7 and T = 8 M = 4 S = 9. In
order to design a general age estimation system independent
from the databases and image types, image qualities, etc.
common T , M and S parameter values should be selected
for all databases used in the experiments. We can also see
from the table that the best MAEs are obtained with T = 8
and M = 6 parameter values for FGNET and PAL databases.
For this reason the same values (T = 8 and M = 6) are
selected for these parameters for MORPH database. Only the
value of the S parameter differs according to the data set
(S = 9 for FGNET, S = 7 for MORPH and S = 3 for
PAL database). When the results are deeply analyzed, it can
be seen that the value of the S parameter can be taken S = 5
to make a common age estimation system for all databases
with different characteristics by ignoring the small decreases
in the accuracies.

The MAEs of holistic and spatial WLD8,1, WLD16,2,

Fig. 6. The best MAE’s of holistic and spatial WLD8,1, WLD16,2, WLD24,3

descriptors with T , M , S parameters.
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TABLE II
THE MAES OF HOLISTIC AND SPATIAL FEATURES EXTRACTED USING MULTI-SCALE WLD OPERATORS WITH DIFFERENT COMBINATIONS OF T , M AND

S PARAMETERS

T = 8, M = 6 T = 8, M = 4 T = 4, M = 6 T = 4, M = 4
#of blocks WLDP,R S FGNET PAL MORPH FGNET PAL MORPH FGNET PAL MORPH FGNET PAL MORPH

1× 1

WLD8,1

3 9.23 14.53 6.16 9.20 14.22 6.08 9.47 16.51 6.38 9.46 16.78 6.36
5 9.16 11.42 5.87 9.11 12.34 5.99 9.35 12.22 6.00 9.40 14.41 6.24
7 9.11 10.89 5.78 9.11 11.16 5.83 9.21 11.48 5.89 9.28 12.29 6.03
9 9.18 10.85 5.82 9.14 10.90 5.89 9.23 11.44 5.84 9.23 11.48 5.98

WLD16,2

3 8.62 10.62 5.52 8.76 10.86 5.56 8.84 11.10 5.58 8.79 11.28 5.66
5 8.73 10.91 5.51 8.88 10.63 5.51 8.73 11.37 5.54 8.91 11.07 5.54
7 9.04 11.39 5.65 9.02 10.81 5.52 8.83 11.53 5.58 8.86 11.31 5.49
9 9.14 11.85 5.71 9.23 11.24 5.55 8.98 11.90 5.58 8.90 11.49 5.52

WLD24,3

3 8.95 10.45 5.74 8.68 10.41 5.63 8.83 11.11 5.67 8.73 11.24 5.64
5 9.13 11.09 5.88 8.80 11.05 5.78 8.90 11.31 5.24 8.79 11.44 5.67
7 9.58 11.80 6.05 9.01 11.16 5.84 9.05 12.00 5.82 8.92 11.69 5.72
9 10.12 12.37 6.11 9.40 11.45 5.95 9.26 12.00 5.92 8.86 11.83 5.75

2× 2

WLD8,1

3 8.34 11.92 5.69 8.27 11.96 5.67 8.62 12.50 6.00 8.71 12.91 6.00
5 8.52 10.78 5.72 8.54 10.93 5.70 8.51 11.08 5.83 8.69 11.43 5.87
7 8.58 10.37 5.90 8.61 10.32 5.80 8.68 10.91 5.77 8.76 10.67 5.84
9 9.01 10.90 6.01 9.13 10.70 5.95 8.70 10.89 5.82 8.93 10.80 5.88

WLD16,2

3 8.29 9.96 5.73 8.01 9.50 5.60 8.22 9.48 5.50 8.30 9.56 5.64
5 8.62 9.74 5.88 8.25 10.14 5.77 8.68 10.07 5.62 8.49 9.88 5.66
7 9.29 10.41 6.33 8.88 10.06 6.01 9.06 10.25 5.97 8.71 10.07 5.76
9 9.37 11.22 6.50 9.35 10.97 6.15 9.53 11.04 5.92 8.83 10.30 5.92

WLD24,3

3 8.74 10.10 6.13 8.62 9.64 5.85 8.39 10.07 5.84 8.13 9.67 5.75
5 9.18 10.06 6.58 9.05 10.42 6.18 8.99 10.98 6.15 8.54 10.01 5.94
7 9.29 10.06 7.21 9.75 9.99 6.69 9.61 10.77 6.37 8.77 10.90 6.08
9 9.41 10.57 7.26 9.89 10.09 6.81 9.90 11.38 6.70 9.16 10.99 6.47

4× 4

WLD8,1

3 8.63 10.35 5.97 8.60 9.95 5.94 8.03 9.79 5.73 8.03 9.84 5.75
5 8.47 9.97 6.40 8.44 9.96 6.30 8.53 10.45 6.03 8.59 10.11 6.08
7 8.63 9.42 6.44 8.60 9.27 6.52 9.21 10.77 6.27 9.14 10.73 6.33
9 8.65 9.69 6.43 8.69 9.51 6.40 9.24 10.49 6.44 9.15 10.20 6.47

WLD16,2

3 8.17 9.47 6.43 8.36 9.91 6.43 7.62 9.69 5.97 7.88 9.84 5.93
5 7.85 9.41 6.53 8.15 9.59 6.59 8.25 9.85 6.35 8.19 9.96 6.34
7 7.68 9.21 6.51 8.07 9.26 6.66 8.49 9.52 6.57 8.45 10.03 6.76
9 7.75 8.86 6.34 8.03 9.38 6.53 8.58 9.34 7.03 8.59 9.66 6.89

WLD24,3

3 8.04 8.80 6.32 8.54 9.48 6.60 8.31 9.31 6.07 8.17 9.75 6.12
5 7.75 8.56 6.37 8.17 8.97 6.52 8.64 8.97 6.47 8.63 9.88 5.56
7 7.54 8.37 6.23 7.89 8.81 6.51 8.54 9.05 6.64 8.78 9.84 6.70
9 7.47 8.21 6.09 7.69 8.55 6.30 7.97 8.85 6.35 8.36 9.59 6.99

8× 8

WLD8,1

3 6.99 6.94 5.82 7.00 7.01 5.78 7.81 8.42 6.38 7.89 8.58 6.46
5 6.60 7.15 5.40 6.58 7.17 5.38 7.51 8.24 6.28 7.57 8.38 6.31
7 6.33 7.25 5.24 6.34 7.27 5.21 7.16 8.37 6.25 7.23 8.43 6.22
9 6.34 7.54 5.14 6.34 7.57 5.12 7.17 8.21 6.00 7.18 8.23 5.99

WLD16,2

3 6.65 8.36 5.68 6.81 8.32 5.84 7.67 8.66 6.36 8.10 8.47 6.41
5 6.57 8.52 5.53 6.66 8.44 5.59 7.37 8.61 6.14 7.75 8.25 6.29
7 6.57 8.58 5.41 6.87 8.66 5.42 7.34 8.74 5.99 7.60 8.58 6.02
9 6.40 8.65 5.42 6.57 8.83 5.45 7.18 8.61 5.87 7.46 8.69 5.92

WLD24,3

3 6.68 8.72 5.60 7.02 9.12 5.69 7.35 9.31 5.53 7.51 9.81 5.84
5 6.64 8.69 5.55 6.92 9.16 5.59 7.12 9.46 5.49 7.41 9.78 5.80
7 6.71 8.85 5.43 6.92 9.19 5.48 6.91 9.51 5.50 7.26 9.86 5.74
9 6.61 8.95 5.43 6.89 9.34 5.40 6.87 9.55 5.49 7.17 9.88 5.68

ours

WLD8,1

3 6.22 6.68 5.18 6.21 6.72 5.19 7.03 7.61 5.91 7.08 7.65 5.98
5 6.13 6.97 4.94 6.12 7.02 4.94 6.65 7.79 5.60 6.68 7.80 5.64
7 6.03 7.02 4.85 6.02 7.06 4.86 6.44 7.78 5.52 6.48 7.85 5.54
9 5.85 7.26 4.85 5.99 7.29 4.85 6.47 7.56 5.40 6.48 7.61 5.42

WLD16,2

3 6.75 8.69 5.33 6.73 9.12 5.41 7.37 8.12 5.87 7.42 8.16 5.85
5 6.70 8.85 5.11 6.53 9.25 5.21 7.03 8.24 5.57 7.10 8.20 5.62
7 6.68 9.03 5.10 6.58 9.43 5.19 6.96 8.50 5.51 6.92 8.59 5.44
9 6.78 9.13 5.17 6.71 9.60 5.17 6.91 8.57 5.47 6.83 8.71 5.39

WLD24,3

3 6.83 8.56 5.30 7.02 9.05 5.38 7.33 8.52 5.32 7.51 9.29 5.67
5 6.73 8.77 5.22 6.97 9.18 5.36 7.16 8.85 5.21 7.36 9.49 5.56
7 6.76 8.93 5.18 7.05 9.31 5.32 7.01 9.07 5.20 7.37 9.55 5.51
9 6.69 9.11 5.20 7.02 9.51 5.32 6.95 9.15 5.21 7.34 9.69 5.48

TABLE III
EXECUTION TIMES (IN SECONDS) FOR TRAINING AND TEXTING SAMPLES

Database Training time Testing Time per 1 image
FG-NET 196.4033 0.2818
MORPH 338.8221 0.2848
PAL 108.5187 0.2781

WLD24,3 descriptors with T , M , S parameters on FG-NET,

MORPH and PAL databases are given in Fig. 6 for better
understanding the effects of WLD parameters and the spatial
features for age estimation. These results are the best ones
for multi-scale WLD descriptors using different combinations
of T , M and S parameters. We can see from the figure
that the results obtained using holistic WLD is not promising
and increasing the number of blocks improves the estimation
performance for all databases used in the experiments. Also it
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can be seen from Table II that the age estimation accuracy
is increased according the number of blocks regardless of
the scale and parameters of the WLD descriptor. Because
increasing the number of blocks increases the discriminative
power of the descriptor by ensuring that the different regions
in an image with similar properties will not contribute to
the same bin in the WLD histogram. In addition better
estimation accuracies are obtained by including the features
extracted from the intersection blocks for all databases. The
minimum MAEs of 5.85 years for FG-NET database, 4.85
years for MORPH database and 6.68 years for PAL database
are obtained using proposed approach with WLD8,1 descriptor
with parameters of T = 8 and M = 6. The values of S
parameter for FGNET, MORPH and PAL databases are 9, 7
and 3 respectively.

In the experiments a PC with an Inter core i5 2.40 GHz
CPU and 3GB memory is used. The training and testing times
of the age estimation system are tabulated in Table III. In
the table training time includes the time needed for spatial
feature extraction, dimensionality reduction and age estimation
phases. As 3-fold cross validation evaluation scheme is used,
the number of training images for FG-NET, MORPH and PAL
databases are approximately 668, 1127 and 387 respectively.
For this reason differences between the training times of
databases are observed.

When the testing time per a facial image is analyzed,
times needed to estimate the age of a test sample are similar
regardless of the databases.

Chen et al. [22] demonstrated that WLD outperforms LBP
[23] which is a powerful texture descriptor in texture recog-
nition and is frequently used in state-of-art age estimation
methods. For this reason we compare the age estimation per-
formance of WLD with LBP in our study. In our experiments
WLD8,1 descriptor with T = 8, M = 6 and S ∈ {3, 5, 7, 9}
gives better results than WLD16,2 and WLD24,3 descriptors
and other parameter values. For this reason we compare the
estimation accuracies of WLD8,1 descriptor with T = 8,
M = 6, S ∈ {3, 5, 7, 9} and LBP8, 1 descriptor, and the results
are shown in Fig. 7. It can be seen from the figure that WLD
descriptor generally outperforms LBP descriptor for FG-NET,
MORPH and PAL databases. Besides, using the proposed
approach improves the estimation accuracy regardless of the
texture descriptors and databases. Furthermore, the results of
texture analysis in [23] show that much of the discriminative
texture information is contained in high spatial frequencies
such as edges. In this context our results also indicate that
the WLD descriptor extracts more powerful discriminating
features than the LBP descriptor for age estimation.

In the study the age estimation accuracies of the blocks used
in spatial feature extraction are calculated separately. In this
process the scales and the parameters of the WLD operator for
the databases are selected according to the best results obtained
and mentioned previously. Then age estimation is performed
by using only the WLD features extracted from one block of
the image. The age estimation performances of 64 blocks for
FGNET, PAL and MORPH databases are shown in Fig. 8,
Fig. 9 and Fig. 10 respectively. It can be seen from the Fig. 8
that the estimation performances of the blocks around the eyes

Fig. 7. The comparison of MAE’s of holistic and spatial WLD8,1 (T = 8,
M = 6, S ∈ {3, 5, 7, 9}) and LBP8,1 descriptors for a) FGNET b) MORPH
and c) PAL databases.

and the mouth are better than the other blocks for FGNET
database. Also when we consider the intersection sections
similar results are obtained. As a result 26 blocks indicated
with red lines in Fig. 8 and the 23 intersection blocks with
higher estimation accuracies are selected and age estimation
is performed by concatenating the WLD histograms extracted
only from these 49 blocks for FGNET database.

When Fig. 9 is examined, it can be seen that the age
estimation accuracies of the wrinkle blocks such as near,
between and under the eyes, sides of nose, and sides of mouth
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Fig. 8. Age estimation accuracies of image blocks for FGNET database.

Fig. 9. Age estimation accuracies of image blocks for PAL database.

which are indicated with red lines are better than other blocks.
The same situation is valid when we consider the intersection
blocks. For this reason the WLD histograms extracted from
26 distinct and 14 intersection blocks (totally 40 blocks) are
concatenated to form spatial WLD histogram for the images
in PAL database.

According to the age estimation accuracies of the 64 blocks
of MORPH database, unlike other databases, a clear and
regular pattern cannot be obtained as shown in Fig. 10. Only
the blocks around the mouth gives better estimation accuracies
than other blocks. Therefore the 18 distinct blocks indicated
with red lines in Fig. 10 and the 15 intersection blocks (totally
33 blocks) with better estimation accuracies are used in spatial
WLD histogram generation for MORPH database.

The results of this experiment are tabulated in Table IV.
In Table IV the number of blocks before and after the block
selection and the MAEs for the FGNET, MORPH and PAL
databases are given. When we compared the results, it can be
seen that similar age estimation performances can be obtained
by using more effective blocks in spatial histogram generation.
This also provides us to reduce the number of features and
computational cost.

IV. CONCLUSION

In this paper a novel age estimation method using a new
texture descriptor WLD is introduced. The age estimation
performances of multi-scale versions of holistic and spatial
WLD descriptors with various combinations of parameters
are compared for finding the optimal parameters. Furthermore
the block and inter-block based information is evaluated to-
gether to improve the age estimation performance. Besides,
the advantage and accuracy of the proposed approach is
confirmed with the experiments using LBP texture descriptor.
As the dimensionality of the SWLD histograms increases, we

Fig. 10. Age estimation accuracies of image blocks for MORPH database.

TABLE IV
THE MAE’S OF ALL REGIONS AND SELECTED REGIONS FOR FGNET,

MORPH AND PAL DATABASES

Database # of blocks # of features MAE

FGNET 113 48816 5.85
49 21168 6.05

MORPH 113 37968 4.85
33 11088 5.25

PAL 113 16272 6.68
40 5760 7.22

perform dimensionality reduction using PCA to find a lower
dimensional subspace. Besides age estimation accuracies of
the blocks used in spatial feature extraction are calculated sep-
arately. By using the blocks with higher estimation accuracies,
the dimensions of the feature vectors and the computational
cost is decreased without losing much accuracy. Determining
the weights of the dominant blocks so increasing the age
estimation accuracy by using these weighted features is our
future work.
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