
 

 
Abstract— In this paper, we propose a method of improving 

the accuracy of detecting nasal cavity location in far infrared 
images for non-contact measurement of human breathing. We 
found that although our previous method for far infrared 
imaging can detect regions that include nasal cavities well, it 
suffers from high false alarm rates. In order to reduce this rate, 
we extend our method with a false alarm classification function. 
Object detection based on a boosted cascade of Haar-like 
feature classifiers is applied to find the candidates of regions 
that include the nasal cavities. In false alarm classification, 
binarization is employed to strictly segment facial area and 
background. Based on the results of binarization, false alarms 
on the background can be accurately classified. 5,100 FIR 
images are collected to train our nasal cavity detector; we 
evaluate the number of false alarms and detection failures. The 
results show that the proposed method can reduce false alarm 
events. 
 

Keywords— Non-contact measurement of breathing, Facial 
thermal image, Nasal cavity detection, Binarization. 
 

I. INTRODUCTION 

In recent years, considerable research has been focused on 
the techniques for the extraction of vital signals from the 
human body, including heart rate, blood pressure, body 
temperature and breathing. By applying these techniques, 
information and communication services can be created to 
better support human activities (especially daily life for 
infants and the elderly). These applications include human 
activity monitoring, medical treatment, daily care, emotion 
analysis, and human computer interaction. In order to realize 
such applications, a technique for monitoring human 
breathing is one of the important goals, because human 
breathing is closely related to health, activity, emotion, and 
so on. However, most of the current major methods for 
monitoring human breathing take the contact approach. 
Therefore, development of non-invasive, non-contact type 
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method is needed. 
In this paper, we study nasal cavity detection in facial 

thermal images to capture non-contact human breathing. Far 
Infra-Red (FIR) imaging is receiving attention as an 
attractive way of realizing this function. We have been 
studying a machine learning algorithm to detect the nose in 
thermal images of the user’s face [1]. We found that while 
our previous method can detect regions that include nasal 
cavities well, the false alarm rate is not insignificant. Based 
on the results of our previous studies, we develop a false 
alarm classification technique for integration with our 
previous method that can reduce false alarms on non-facial 
regions. We also evaluate the frequency of missed-nose and 
of false alarms by conducting simulation experiments using 
5,100 far infrared (FIR) images. 

The rest of this paper is organized as follows. In Section II, 
we briefly review previous related work. Section III presents 
details of our proposed method. Section IV describes the 
results of our experiments. Section V concludes this paper. 

II. RELATED WORKS 

Several studies on the monitoring of human breathing have 
been reported [2]-[5]. Most of them do not use the 
non-contact approach, so that user stress created by the 
placement of or the detachment of sensor devices by body 
motion, are unavoidable.  

An automatic respiration monitoring system by using rgb 
imaging was proposed by Nakai et al. [6]. However, this 
system can monitor only users sleeping on a sensor-equipped 
bed. The works of K. Abbas et al. [7] and Fei et al. [8], 
showed that FIR imaging had promise for the monitoring of 
human breathing. We have also shown that human breathing 
can be automatically captured by FIR imaging [9]-[11]. 
However, in these works, including our own, the relative 
position between the user’s face and the FIR camera must be 
kept stable. Therefore, the detection of breathing becomes 
difficult when the position of the user’s face is unknown. 

Studies for tracking the human nose in thermal images 
based on particle filters [12] or image processing [13] have 
been reported. These offer some fixed robustness against 
head motion. However, in these methods, both naked eyes of 
the user must be constantly captured by the FIR camera. 
Moreover, these methods assume that the entire face is 
captured by the FIR image. How to recognize whether a face 
exists in an FIR image or not, was not discussed. B. Kaur et al. 
have proposed a method for tracking region including nasal 
cavities on thermal image [14]. However, in this method, 
manual operation to determine the initial position of nose is 
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needed. 
In our study, we try to find whether nasal cavities exist on 

FIR image automatically, and to extract the region including 
nasal cavities from FIR images under the simple condition 
that nasal cavities are captured by FIR camera. 

III. PROPOSED METHOD 

We propose a method to detect the nose in FIR images by 
applying a current facial image processing scheme and false 
alarm classification. A block diagram of proposed method is 
shown in Fig.1. 

A rapid object detection method based on a boosted 
cascade of rectangular feature (called Haar-like feature) 
classifiers proposed by Viola and Jones [15] and improved by 
Lienhart and Maydt [16] is applied in our work. 
Face-detectors using their method have become popular 
because of their speed and robustness. In this research, we 
replace the gray-scale training images with FIR images for 
nose detection and replace gray-scale input image with an 
FIR image for detection [1]. GentleBoost is used here to learn 
classifiers in our method. We introduce the above method to 
detect the region including nasal cavities. By applying this 
method, we get n,  xd(t)k, yd(t)k, wd(t)k, and hd(t)k (k=1,2,…,n) 
from a trained nose-detector and input FIR image f(x, y, t) 
captured at time t. Here, n, xd(t)k, yd(t)k, wd(t)k, and hd(t)k 
denote the number of detected region, horizontal position of 
the left-upper corner of the detected rectangle region, its 
vertical position, width of the rectangle and its height, 
respectively. However, we confirmed that its detection 
results included regions other than the correct nasal region [1]. 
The frequency of erroneous nose detection was not 
negligible. 

In order to reduce such errors, we introduce false alarm 
classification. This classification consists of a binarization 
process and a classification process with a threshold. We 
introduce these processes to isolate the human face in the FIR 
image. In most cases, the human face is hotter than the other 
areas. Therefore, we can isolate the face by using the suitable 
threshold described as follows: 

݃ሺݔ, ,ݕ ሻݐ ൌ ൜
1	ሺ݂ሺݔ, ,ݕ ሻݐ ൒ ௧ሻ݄ݐ
0	ሺ݂ሺݔ, ,ݕ ሻݐ ൏ 	 ௧ሻ݄ݐ

        (1) 

Where, g(x, y, t) and tht are the binarized FIR image at time t 
and the threshold for segmentation, respectively. From  
g(x, y, t), we calculate the sum of pixels in each detected 
region by (2). 
,݌൫ܮ ,ݍ ,ݎ ,ݏ ݃ሺݔ, ,ݕ ሻ൯ݐ ൌ ∑ ∑ ݃ሺ݅, ݆, ሻ௤ା௦ିଵݐ

௝ୀ௤
௣ା௥ିଵ
௜ୀ௣   (2) 

Here, (p, q) is the left-upper corner position of the rectangle 
on g(x, y, t). r and s are its width and its height, respectively. 
Next, the containing ratio of the facial area in the above 
rectangle is calculated by (3). 
ܴ൫݌, ,ݍ ,ݎ ,ݏ ݂ሺݔ, ,ݕ   ሻ൯ݐ
ൌ ,݌ሺܮ ,ݍ ,ݎ ,ݏ ݃ሺݔ, ,ݕ ݎሺ	ሻሻ/ݐ ∙  ሻ         (3)ݏ

Finally, the detected region is classified as false alarm if 
R(xd(t)k, yd(t)k, wd(t)k, hd(t)k, f(x, y, t)) is lower than threshold 
thr. Otherwise it is classified as nasal region. All detected 
regions (xd(t)k, yd(t)k, wd(t)k, hd(t)k) in each input FIR image 
f(x, y, t) are classified based on the above algorithm.  

 
 

 
Fig.1. Block diagram of proposed method. 

 

 
Fig.2. Relationship between FIR camera and subject. 

 

IV. EXPERIMENTS 

Experiments were conducted to evaluate the frequency of 
nasal cavity detection failure and false alarm. Moreover, the 
relationship between false alarm and threshold thr was 
experimentally examined. 

A. Recording FIR Image 

Facial thermal images were captured by an FIR camera 
with the following specifications. 
 Type: NEC/Avio, TH7102MX 
 Capture wavelength: 8-14 μm 
 Thermal resolution: 0.06 ˚C 
 Size of sensor (active area): 320x240 pixels 
 Contrast: 256 levels (8bit), Gray scale 
 Frame rate: 30 fps 
 Temperature range: 32.0-40.0 ˚C 
Room temperature was around 26 ˚C and remained constant 
throughout all trials. The subject sat in front of the camera in 
a room (Fig. 2). Each subject was asked to breathe normally 
via the nose while being recorded. FIR images from nine 
subjects (nine males with ages from 22 to 23 years) were 
acquired. FIR images were recorded for one minute for each 
subject. 300 continuous frames (ten seconds) wherein the 
subject breathed stably were selected. Finally, nasal region in 
each frame was manually extracted for training the FIR 
classifier for each subject. Minimum and maximum size of 
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nasal region extracted from the FIR images of each subject 
were 23x13 pixels and 31x23, respectively. FIR images 
totaling 2,700 patterns were acquired as positive samples.  
Moreover, FIR images totaling 2,400 patterns, which 
included no human face, were collected as negative samples. 
Examples of positive data and negative data are shown in Fig. 
3 and 4, respectively. 

B. Training and Evaluation 

The nine-fold cross-validation procedure was employed. 
Here, a set of 2,400 positive samples (8 subjects) and the 
remaining 300 samples (1 subject) were used as training and 
test material, respectively. Negative samples for training 
were fixed, so that 2,400 samples were used. Experiments 
were performed for one hundred and one (0, 1, …, 100%) 
ratios of the facial area. These processes were repeated nine 
times with each of nine subject’s samples used once as the 
validation data. Threshold tht for binarization was set at 100. 
This value (corresponds to about 35 ˚C) was selected from 
the results of preliminary experiments. 

Experimental metrics were correct-detection ratio 
(denoted as Rc), miss-detection ratio (denoted as Rm), and 
false alarm ratio (denoted as Rf). Correct-detection means that 
one of the detection results indicated the correct nasal region. 
Miss-detection means that the detection results did not 
include a correct nasal region. On the other hand, false alarm 
means that one of the detection results indicated a region 
other than the correct nasal region. These metrics were 
calculated as follows. 
ܴ௖ ൌ ௖ܰ/ ௔ܰ௟௟                (4) 
ܴ௠ ൌ ܰ௠/ ௔ܰ௟௟               (5) 

௙ܴ ൌ ௙ܰ/ ௔ܰ௟௟                (6) 
Here, Nc, Nm, Nf, and Nall denote the number of the frames 
with correct-detection, those with miss-detection, those with 
false alarm and total number of frames, respectively. 

C. Results 

At first, results for positive samples were analyzed. Fig. 5 and 
6 show the results for training samples and test samples, 
respectively. Here, average in Rc, that in Rm and that in Rf 
were calculated for all data sets. In the case that thr=0, the 
results show the performance of the previous method.  

Fig. 7 shows the change in the number of non-facial region 
detection for each threshold. Here, the number of the detected 
rectangle region as false alarm in each frame was totaled and 
its average per frame was calculated.  

Fig. 8 and 9 show an example of detection by the previous 
method and that by proposed method using the same input 
image, respectively. Fig. 10 shows an example of the results 
yielded by the proposed method including correct-detection 
and false alarm.  

Optimal threshold for the proposed method for each 
subject was examined based on the experimental results. 
Table I and II show detailed results for training samples and 
test samples, respectively. Also the optimal threshold for 
each subject, and corresponding Rf values, are shown in the 
two rightmost columns. These were selected under the 
condition that Rc is equal to that in the previous method so 
that Rf is smaller. 

 Next, results for negative samples were analyzed. Fig. 11 
shows the results for the training samples. Here, the average 
Rf for all data sets is calculated. When thr=0, the results show 

the performance of the previous method. Fig. 12 shows the 
change in the number of non-facial regions detected for each 
threshold. Table III shows the detailed results for training 
samples. Here, optimal thr in Table I was used for each data 
set. 

 

 
Fig.3. Examples of positive samples. 

 

 
Fig.4. Examples of negative samples. 
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Fig.5 Results for training samples (positive samples). 
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Fig.6. Results for test samples (positive samples). 

 

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1

N
u
m

b
e
r 

o
f 

fa
ls

e
 a

la
rm

 
d

e
te

ct
io

n

Threshold

Training samples Test samples

Fig.7. Average number of false alarms (positive samples). 

 
TABLE I 

DETAILED RESULTS FOR TRAINING DATA 
 (POSITIVE SAMPLES, NALL=2400) 

Data set Previous method Proposed method 
Rc [%] Rm [%] Rf [%] Rf [%] Thr 

Except for A 81.5 18.5 73.3 61.0 0.48 
Except for B 68.0 32.0 76.2 62.7 0.50 
Except for C 85.7 14.3 89.6 77.3 0.48 
Except for D 60.6 39.4 91.6 74.8 0.50 
Except for E 84.3 15.7 97.4 87.3 0.48 
Except for F 80.9 19.1 86.1 59.4 0.53 
Except for G 83.9 16.1 87.8 74.1 0.48 
Except for H 65.8 34.2 98.2 94.3 0.51 
Except for I 83.0 17.0 90.3 78.6 0.48 

Average 77.1 22.9 87.8 77.7 - 

 
TABLE II 

DETAILED RESULTS FOR TEST DATA 
 (POSITIVE SAMPLES, NALL=300) 

Data set Previous method Proposed method 
Rc [%] Rm [%] Rf [%] Rf [%] Thr 

A 6.7 93.3 93.0 85.0 1 
B 100.0 0.0 50.7 7.3 0.58 
C 54.7 45.3 100.0 45.3 0.94 
D 100.0 0.0 100.0 100.0 0.84 
E 100.0 0.0 99.7 99.3 0.90 
F 90.7 9.3 94.7 94.7 0.49 
G 69.7 30.3 89.3 0.0 0.67 
H 30.7 69.3 100.0 100.0 0.80 
I 100.0 0.0 96.7 91.3 0.78 

Average 72.5 27.5 91.6 69.2 - 

 

 
Fig. 8. An example of detection by the previous method. Red rectangles at 
the center and at the bottom are correct-detection and false alarm, 
respectively.  

  

 
Fig. 9. An example of detection by proposed method. Red rectangle is 
correct-detection. False alarm in Fig. 8 was eliminated. 

  

 
Fig. 10. An example of false alarm by proposed method. Red rectangles 
other than the one at the center are false alarms. 
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 Fig.12. Average number of false alarms (negative samples). 
 

TABLE III 
COMPARISON OF FALSE ALARM FOR TRAINING DATA 

 (NEGATIVE SAMPLES, NALL=2400) 
Data set Previous method [%] Proposed method [%]

Except for A 47.5 24.5
Except for B 35.7 15.0
Except for C 32.1 6.2
Except for D 53.7 23.8
Except for E 69.2 29.8
Except for F 68.0 2.5
Except for G 52.5 26.9
Except for H 56.5 25.4
Except for I 58.1 30.1

Average 52.6 20.5

 

D. Discussion 

According to Fig. 5 and 6, the average false alarm ratio of the 
proposed method improved 10% around thr=0.5 for positive 
data compared to the previous method, while the proposed 
method basically matches the correct-detection ratio of the 
previous method. This optimal threshold was mostly fixed for 
all data sets (Table I). Analysis of the detection result shows 
false-alarm occurring in non-facial regions were eliminated 
by the proposed method. These results show that proposed 
method can reduce the detection of non-nasal regions by 
using a suitable threshold. In Fig. 8, the previous method 
yielded one false alarm due to wrinkles on clothing. On the 
other hand, the proposed method was able to classify it as a 
false-alarm (Fig. 9). In Fig. 11 and Table III, the proposed 
method improved the false alarm ratio by 32% around thr=0.5 
for negative data compared to the previous method. False 
alarm events in negative data were classified more accurately. 
We confirmed that false alarms generated in areas other than 
the face were eliminated by the proposed method with 
optimal threshold. 

In Fig. 7 and 12, the average number of false alarms 
detected around thr=0.5 for positive samples and that for 

negative samples improved by about 0.5 and 0.8, respectively. 
It is useful to classify all detection results as either 
correct-detection or false alarm. However, the proposed 
method can not overcome false alarms that occur in the facial 
area such as throat or jaw (Fig. 10). The area including these 
parts was classified as facial area based on their temperature, 
because the surface skin was uncovered. We believe that this 
type of false alarm can be eliminated by observation of the 
variation in temperature over several frames, since the nasal 
cavities exhibit cyclic changes in temperature. Moreover, 
another object detection method could be examined. For 
example, an object detection method based on support vector 
machines seems to be useful. Studies on improving the 
accuracy of nasal region detection are future works. 

From Table II, optimal thresholds for test data varied only 
slightly among the subjects. Average false alarm ratio was 
improved by 22% by using the optimal threshold for each 
subject. On the other hand, optimal thresholds for training 
data were about 0.5 regardless of the subject. The proposed 
method seems to provide a fixed performance for known 
users. How to estimate the optimal threshold for an unknown 
user should be examined in order to reduce the number of 
false alarms. This challenge is another future work. 

All in all, the above results confirm the validity of our 
proposed method for reducing the false alarm rate in 
detecting the nose. 

V. CONCLUSION 

We proposed to apply false alarm classification into our 
previous method to detect the nasal region accurately in 
thermal images of the user’s face. The intent is to reduce the 
false alarm rate of our previous method. First, a method to 
classify false alarms was proposed; it accurately detects the 
region that includes the nasal region from thermal facial 
images. Next, the performance of our proposed method was 
evaluated by experiments. Our results suggested that the 
proposed method suffers far fewer false alarm events than our 
previous method even though it uses simple image 
processing operations. Moreover, the proposed method 
minimizes miss-detection if a suitable threshold is used. 

However, several technical issues hinder the achievement 
of breathing detection with few constraints on the user. For 
example, our method can not eliminate false alarm events 
that occur in the facial area. A method that can handle 
arbitrary poses also should be studied. The results described 
in this paper clarified several technical issues when we apply 
the object detection method by Viola and Jones to FIR 
images. 

In future work, we will study how to classify the nasal 
region more accurately from detection results. For example, 
we plan to study how to choose better training samples. 
Moreover, we plan to combine the proposed method with 
observation of the variation in temperature over several 
frames, or consider the use of another object detection 
method. 
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