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Abstract—Estimating the parameters of a geometric propaga-
tion model from MIMO channel sounding measurements will be
considered, which requires the solution of an inverse problem.
Thus, a model of the measured data is derived, which incorpor-
ates a model of the measurement system as well as the parameters
of interest. Based on the data model a maximum-likelihood
estimator will be derived to infer the model parameters. Because
virtual antenna arrays are considerer, formed by step-wise
rotating directive antennas at transmitter and receiver side,
the MIMO measurements are conducted in the beam-space.
Hence, the data model can be described by a multidimensional
convolution of the measurement system and the propagation
channel. Based on the convolutional modelling, the parameter
estimation problem is transformed into a harmonic retrieval
problem, which can be solved by an Unitary Tensor-ESPRIT
algorithm. The maximum-likelihood and ESPRIT estimator are
compared by Monte-Carlo simulations according to their root-
mean-square estimation error.
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I. Introduction

CHANNEL sounding, the empirical investigation of
wave propagation by measuring a channel impulse re-

sponse (CIR), is a prerequisite to understand the character-
istics of the propagation channel [1]. Knowledge of channel
characteristics is required to e.g. develop new air interfaces
or to derive channel models. Because novel air interfaces are
considered to be equipped with multiple antennas, the propaga-
tion channel has to be characterised in temporal and spatial
domain, hence multidimensional sounding is conducted.

De-embedding of the channel sounder system from the
measurements is required to gain access on the raw propaga-
tion channel. The de-embedding of the measurement system
is possible by model-based identification of the system of in-
terest (the propagation channel) from the measurements, while
knowing the measurement system in terms of a system model.
Therefore, parametric system identification is employed and
geometrical parameters like azimuth of arrival (AoA), azimuth
of departure (AoD) or time difference of arrival (TdoA) of
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a geometrical propagation channel model [2] are estimated
from the measurements. Parameter estimation or parameter
inference is an inverse problem, which requires a data model
to describe the mapping of the parameters of interest to the
measured data. Afterwards, parameter estimators are applied
to solve the inverse problem.

Parametric or model-based system identification provides a
much higher resolution than non-parametric methods. Here,
resolution is denoted as the capability to separate e.g. two
propagation paths in a certain measurement dimension. Res-
olution of non-parametric methods is mainly determined by
the aperture size of the measurement system in the respective
dimension, known as the Rayleigh resolution limit. Model-
based estimation can overcome this resolution limit, why such
methods are denoted as high resolution parameter estima-
tion (HRPE). Resolution of such methods is mainly limited
by the available signal to noise ratio (SNR) and the model
accuracy, but also the finite device aperture as e.g. bandwidth,
array size and observation time.

For spatial channel characterisation and in order to estimate
the model parameters AoA and AoD, multiple input multiple
output (MIMO) measurements with antenna arrays at both link
ends are commonly conducted [1]. Utilising antenna arrays
at both sides is the most promising approach, because it
allows a fast multidimensional acquisition of the propagation
channel [1], which is required for e.g. time-variant propagation
channels. By step-wise rotating a single antenna at transmit-
ter (Tx) and receiver (Rx) side, which is quite often employed
for channel sounding at millimetre wave frequencies [3], [4],
virtual (synthetic) antenna arrays are formed at both link ends.
Such mechanical arrangements are more ease to construct than
real antenna arrays, to the cost of a much longer measurement
duration. Consequently, the stationariness of the propagation
channel has to be much higher compared to array based meas-
urements, why this approach seems to be suitable for time-
invariant propagation channels only. The rotated antennas can
have omni-directional characteristics, which coincides with a
pure spatial channel sampling; or the antenna can be directive,
which coincides with a measurement in the beam-space [5]. In
this paper, beam-space measurements with directive antennas
are considered.

Algorithms to estimate the propagation model parameters
from multidimensional sounding measurement with real ar-
rays [6] and virtual antenna array [7]–[11] are known from lit-
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erature. Quite often, estimators of maximum-likelihood (ML)
type are utilised, where a cost function based on the measured
data’s distribution is defined. This cost function has to be
optimised w.r.t. the model parameters, which can become
computationally cumbersome due to the high dimensionality.
Also, convergence to a global optimum is hard to guarantee
because the cost functions are typically non-convex.

The step-wise rotation of antennas allows to formulate
the data model as a multi-dimensional convolution of the
propagation channel and the channel sounding system. By
applying beam-space transformation and subsequent multi-
dimensional deconvolution with the measurement system re-
sponse, the parameter estimation problem is transformed into
a 3-dimensional harmonic retrieval problem. Considerable
solvers for such a problem are e.g. the multi-dimensional
MUSIC [12], the multi-dimensional rank reduction estimator
(RARE) [13] as well as multi-dimensional PARAFAC [14].
Here, the Unitary Tensor-ESPRIT [15], [16] will be utilised.
The Estimation of Signal Parameters via Rotational Invariance
Technique (ESPRIT) algorithm avoids costly enumerative-
based search and global convergence is guaranteed, to the cost
of possibly degraded estimation accuracy due to a simplified
data model. Estimation performance of the ESPRIT and the
ML will be compared by Monte-Carlo simulations.

The paper is structured as follows: the data model for
the inverse problem is introduced in Section II. The ML
estimator is derived in Section III. Beam-space transformation
and application of the Unitary Tensor-ESPRIT is explained in
Section IV. Simulation based comparison of ML and ESPRIT
is presented in Section V. Section VI concludes the paper.

A. Mathematical Notation
The following notation is used to indicate scalars, vectors,

matrices and tensors: Scalars are italic letters (�, ..., �, ..., �),
column vectors are written as bold-face lower-case letters
(�, ..., �), matrices correspond to bold face upper-case letters
(�, ..., �), and tensors are written as bold-face calligraphic
letters (�, �, ...).

Convolution of two functions according to their matching
dimensions is denoted by the ∗ operator. The matrix operations(•)∗,(•)�, (•)† and (•)� are defined as the conjugate, trans-
pose, Moore-Penrose pseudo-inverse and conjugate transpose,
respectively. Moreover, the Kronecker product of two matrices
is symbolised by ⊗ and the Khatri-Rao product (column-wise
Kronecker product) by ⋄.

II. Measurement Data Model and Inverse Problem
In order to infer parameter values, a model of the meas-

urement data is required. This model incorporates the meas-
urement system and the propagation channel. Basically, the
measurement system is described by a model of the antenna
array. The propagation channel is described in terms of the
propagation parameters AoA, AoD and TdoA.

A. Propagation Channel Model
The propagation channel is assumed as the superposition of

multiple propagating waves or paths. Each path is modelled

� �

�

� �
k�

k�

Fig. 1: Spherical coordinate system and polarisation definition

as a discrete optical ray, describing a delayed transmission
from Tx to Rx in the delay domain [2]. Propagation in the
spatial domain is described in terms of the angles AoA and
elevation of arrival (EoA) at the Rx, and AoD and elevation
of departure (EoD) at the Tx. The elevation angle � is defined
in the range from [−�/2 , �/2 ] and the azimuth angle � in
the range of [−�, �], see Fig. 1. Polarisation of a wave is
defined according to the �-�-plane, spanned by the spherical
coordinate system basis vectors �� and �� in the impingement
point on the sphere. Because of the assumed discrete nature of
each path, the model is a superposition of Dirac deltas in the
angular-delay domain. Hence, the model of the time invariant
propagation channel is given by [17]�(�� �, ���, �)= �∑�=1 �� ⋅ �(�� � − �� �� ) ⋅ �(��� − ���� ) ⋅ �(� − ��)

(1)

with ���� = [���� ���� ]� and �� �� = [�� �� �� �� ]� containing
the azimuth and elevation angles at Rx and Tx side, respect-
ively. The propagation delay or TdoA is denoted by �� and�� = [��,�� ��,�� ��,�� ��,�� ]� is the vector of polarimetric
path weights.

B. Measurement System Model
1) Virtual Array Model: An antenna is assumed as linear,

time invariant system with a finite impulse response dura-
tion. Hence, the antenna’s angle and polarisation dependent
impulse response �0(�, �, �) can be utilised to describe the
antenna’s radiation properties in the far-field, denoted by
vector �(�, �, �).�(�, �, �) = [�� ��] [��0 (�, �, �)��0 (�, �, �)] = � ⋅ �0(�, �, �) (2)

The propagation channel is sampled in the spatial domain
by an array of antennas. Here, a virtual uniform circular
array (UCA) is considered, formed by step-wise rotating a
single antenna w.r.t the origin of a spherical coordinate system.
Because the azimuth plane is sampled only, the angular domain
is limited to the azimuth domain and subsequent investigations
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are limited to AoA and AoD. Elevation angles are assumed as
0°. Rotating a single antenna is an angular invariant process,
as long as the antenna pattern does not change during the
rotation [18]. Assuming angular invariance, the polarimetric
array response �(�, �) is given by the convolution of the
antenna’s polarimetric impulse response and the direction of
impingement ��.�(�, �) = �0(� − ��, �) = �0(�, �) ∗ �(� − ��) (3)

By rotating the antenna to a set of � discrete angles in the
range from [0, 2� − �0], the convolution result is sampled at� = 0 … � − 1 antenna positions [5]. Parameter �0 denotes
the rotation step size.�(��0, �) = �0(��0 − ��, �) (4)

The sampling results are concatenated in matrix�(��, �) ∈ ℂ2×�, denoted as the array response
matrix.�(��, �) = [�0(−��, �) … �0((� − 1)�0 − ��, �)]= [��0 (−��, �) … ��0 ((� − 1)�0 − ��, �)��0 (−��, �) … ��0 ((� − 1)�0 − ��, �)] (5)

Considering dual-polarimetric antennas, hence the rotated
antenna features two ports which are orthogonally polarised,
the array response matrix has to be extended accordingly.
The array response matrix ������(��, �) ∈ ℂ2×2� for dual-
polarimetric antennas is introduced, built by������(��, �) = [�1(��, �) … �2(��, �)]= [�������(��, �) �������(��, �)]� (6)

Matrix �1(��, �) and �2(��, �) denote the array response
matrix for the respective antenna ports, built according
to equation (5). Vectors �������(��, �) ∈ ℂ2�×1 and�������(��, �) ∈ ℂ2�×1 denote the array response according
to the respective polarisation.

2) Noise Model: Another part of the measurement system
model is the noise model. Here, the noise is assumed as an
additive, complex circular, random process; with zero-mean
and Gaussian distribution [19], denoted by � ∼ ��(�; �).
The noise model is parametrised by the covariance matrix �,
which depends on the noise covariance �� � at Tx, ��� at
Rx and �� in the delay domain. Assuming the noise processes
in these dimensions being uncorrelated, the noise covariance
matrix comprises a Kronecker structure.� = �� ⊗ �� � ⊗ ��� (7)

Additionally, the noise is assumed as spatially and temporarily
uncorrelated. Hence, the noise covariance matrix becomes�(�) = �2 ⋅ ��� ⊗ ��� ⊗ ��� (8)

with �2 denoting the noise power.

C. Measurement Data Model

Considering the introduced propagation and measurement
system model, the data model is the multi-dimensional con-
volution of the propagation channel model and the antenna
response at Tx and Rx side, plus additive Gaussian noise �(�).�(���, �� �, �) = �(���, �� �, �) + �(�)= ��(���, �� �, �) ∗ �0(���, �� �, �) + �(�) (9)

Note, that the propagation channel model is reduced to the
case of 0° EoA and EoD. Vector �0(���, �� �, �) denotes
the measurement system response, which is given by the
convolution of the polarimetric antenna response of Tx and
Rx antenna.�0(���, �� �, �)= ∫ �0,��(���, �) ⊗ �0,� �(�� �, � − �)�� (10)

The multi-dimensional convolution in equation (9) is sampled
in azimuth by rotating the antenna at Tx and Rx to �� and�� positions with step size �� �0 and ���0 , respectively. The
delay domain is sampled at �� points with step size �0.

Assuming dual-polarimetric antennas at both link ends, 4
polarisation combinations are given for each combination of
Tx and Rx antenna positions. The corresponding measure-
ments are concatenated in the tensor � ∈ ℂ2��×2��×��.

D. The Inverse Problem

The parameters AoA, AoD, TdoA and polarimetric paths
weights for all paths are concatenated in the vectors ���,�� �, � and �.��� = [���1 … ���� ]� ∈ ℂ�×1 (11a)�� � = [�� �1 … �� �� ]� ∈ ℂ�×1 (11b)� = [�1 … ��]� ∈ ℂ�×1 (11c)� = [��,�� ��,�� ��,�� ��,��]� ∈ ℂ4�×1 (11d)

The parameter estimation task is to deduce the vectors ���,�� �, �, � from the measurements �. Based on the data model
(9), mapping of the parameters to the measurement data is
known. � ∶ ���, �� �, �, �, � → � (12)

Because the parameters have to be inferred from the measure-
ments, an inverse problem is given.�−1 ∶ � → ���, �� �, �, �, � (13)

Note, that the noise model parameter � is not of immediate
interest, but have to be taken into account during parameter
estimation. This kind of parameters are denoted as nuisance
parameters.
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III. Maximum-Likelihood Estimator
A. Sampled Data Model

For concise description, the data model in equation (9) is
re-written in matrix-vector notation. First, the data model is
transformed to frequency domain (� → �), which yields� = vec {[�](1)} = �(���, �� �, �) ⋅ � + � ∈ ℂ4�×1

(14)

with [•](1) the 1-mode unfolding [20] of the measurement
tensor and vec {•} the vectorising operator, stacking the matrix
columns. Matrix �(���, �� �, �) ∈ ℂ4�×4� contains the
sampled model function �(���, �� �, �) in equation (9) for� paths and all polarisation combinations.�(���, �� �, �)= [��,�(���, �� �, �) ��,�(���, �� �, �) …��,�(���, �� �, �) ��,�(���, �� �, �)] (15)

Accordingly, matrix ��,�(���, �� �, �) ∈ ℂ4�×� contains
the sampled model function �(���, �� �, �) for � paths and
polarisation combination �, �. The variables �,� denote either� or � polarisation.��,�(���, �� �, �)= [��,�(���1 , �� �1 , �1) … ��,�(���� , �� �� , ��)] (16)

The vector ��,�(���� , �� �� , ��) ∈ ℂ4�×1 represents the
sampled model function �(���, �� �, �) for one path and
polarisation combination �, �.��,�(���� , �� �� , ��)= vec {��(��) ⋄ ��� �(�� �� ) ⋄ ����(���� )} . (17)

The sampling vector contains the matrices��� �(�� �� ) ∈ ℂ2��×�� and ����(���� ) ∈ ℂ2��×��,
comprising the frequency response of the virtual UCA at Tx
and Rx, sampled at �� frequency bins.����(���� ) = [����(���� , 0) … ����(���� , (�� − 1)�0)]

(18)��� �(�� �� ) = [��� �(�� �� , 0) … ��� �(�� �� , (�� − 1)�0)]
(19)

Vector ����(���� , ���0) and ��� �(�� �� , ���0) are the array re-
sponse vectors in frequency domain, according to equation (6).
Vector �(��) ∈ ℂ��×1 contains the exponentials according
to the delay.�(��) = [1 … exp (−�2�(�� − 1)�0��)]� (20)

B. Cost Function Derivation
Based on the noise model assumption, the distribution of

the measurement vector � is� ∼ �� (�(���, �� �, �) ⋅ �; �(�)) . (21)

Using the ML method [21], the likelihood function �(�|�)
with � = [���� �� �� �� �� �]� has to be maximised

to deduce parameter values. For sake of convenience, the
arguments are dropped.�(�|�) = exp (− (� − � ⋅ �)� �−1 (� − � ⋅ �))

det {��} (22)

Plugging in the noise model (8), taking the natural logarithm
of the likelihood function and neglecting constant terms yields
the cost function for parameter estimation

ℒ = 2� ln (�) + �−2 (� − � ⋅ �)� (� − � ⋅ �) . (23)

This cost function has to be minimised for parameter es-
timation purpose. The framework presented in [22] is used
therefore.

IV. Beam-Space Unitary Tensor-ESPRIT

The discrete Fourier transform is used for beam-space
transformation of the measurements in azimuth and delay
domain. Based on the beam-space transformed measurements,
the Unitary Tensor-ESPRIT can be applied to derive estimates
of the AoAs, AoDs and TdoAs.

A. Data Model Reduction

As stated previously, each antenna is described in terms
of a polarimetric impulse response. To apply the Unitary
Tensor-ESPRIT, the antenna’s cross-polarimetric pattern is
assumed as negligible. A single entry in �0(���, �� �, �)
remains, the others are zero. Hence, the data model in equa-
tion (9) reduces to��,�(���, �� �, �)= ��,�(���, �� �, �) + �(�)= ��,�0 (���, �� �, �) ∗ ℎ�,�(���, �� �, �) + �(�) (24)

with the reduced propagation channel modelℎ�,�(���, �� �, �)= �∑�=1 ��,�� �(��� − ���� )�(�� � − �� �� )�(� − ��) (25)

and the reduced measurement system response��,�0 (���, �� �, �) = ��0,� �(���, �) ∗ ��0,��(�� �, �) . (26)

Variables � and � denote either � or � co-polarisation.
Ignoring polarimetric antenna pattern introduces a mismatch

between the measured data and the assumed data model. An
incomplete data model impacts the solution of the inverse
problem, which degrades the estimation quality [23], [24].
However, examination of this estimation degradation is con-
ducted in Section V.

The tensor � of polarimetric measurements is reshaped into
the tensor ������ ∈ ℂ��×��×��×4, with the last dimension
yielding the measurements of all polarisation combinations.
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B. Beam-space Transformation and Calibration
First, measurements with single polarised antennas are

considered, denoted by ��,������ ∈ ℂ��×��×��. Due to
the rotation of a single antenna in the azimuth domain, the
convolution in equation (3) is a cyclic convolution, because
the azimuth is periodic. In case of a discretisation of the
convolution result, the convolution can be described by a
circulant matrix, constructed from a vector � by �(�). Con-
sidering a frequency slice �(�) ∈ ℂ��×�� of the tensor��,������ Fourier transformed in delay domain, the convolution
in azimuth domain according to equation (24) is�(�) = �(����(�)) ⋅ ��,�(�) ⋅ �(��� �(�))� + �(�) (27)

with ��,�(�) a frequency slice of the Fourier transformed
and sampled propagation model according to equation (25).
Vector ����(�) ∈ ℂ��×1 and ��� �(�) ∈ ℂ��×1 contain
the sampled antenna pattern at frequency � and the respective
antenna’s rotation positions.����(�)= [��0,��(0, �) … ��0,��((�� − 1)���0 , �)]� (28a)��� �(�)= [��0,� �(0, �) … ��0,� �((�� − 1)�� �0 , �)]� (28b)

Facing the properties of circulant matrices, they are diagon-
alised by the Discrete Fourier Transform (DFT) matrix � [25].

�(�) = �� ⋅ diag {� ⋅ �} ⋅ � (29)

Applying DFT to equation (27) yields��� ⋅ �(�) ⋅ ����= ����(�)��,��� (�)��� �(�)� + ����(�)���� (30)

with ��,��� (�) = ��� ⋅ ��,�(�) ⋅ ��������(�) = diag {��� ⋅ ����(�)}��� �(�) = diag {��� ⋅ ��� �(�)} .
Matrix ��,��� (�) contains a frequency slice of the Fourier
transformed and sampled propagation model in beam-space.
In beam-space, a path arriving/departing from angle �� results
in a complex exponential exp (−�2���0��), with �0 = 1/2�.
The same holds for the beam-space (Fourier) transformed
delay dimension as well, where the complex exponential is
exp (−�2���0��), with �0 = 1/���0.

In order to describe the beam-space transformation for the
complete measurement tensor ��,������, the tensor’s 1-mode
unfolding with subsequent vectorisation is considered.��,� = vec {[��,������](1)} (31)

The measurement’s beam-space transformation is given by� ⋅ ��,� = ��,� ⋅ ��,��� + ��� . (32)

Vector ��,��� and ��� denotes the sampled propagation
model (25) and noise in beam-space, respectively. Matrix� ∈ ℂ�×� denotes the DFT matrix in the angle-delay
domain � = ����� ⊗ �� ���� ⊗ ������ (33)

with ��� ∈ ℂ��×��, ��� ∈ ℂ��×��, ��� ∈ ℂ��×��
being the Fourier-transformation matrices in delay and azimuth
domains. Matrices �� ∈ ℝ��×��, ��� ∈ ℝ��×��,�� � ∈ ℝ��×�� are selection matrices, explained later on.
Matrix ��,� ∈ ℂ�×� is the sampled beam-space response
of the measurement system.��,� = diag {vec {(�� ���� ����) ⋄ (����������)}}

(34)

with matrix ���� ∈ ℂ��×�� and ��� � ∈ ℂ��×�� being
the sampled and beam-space transformed antenna pattern at
Rx and Tx side for the respective polarisation.���� = ��� ⋅ [����(0) … ����((�� − 1)�0)] (35a)��� � = ��� ⋅ [��� �(0) … ��� �((�� − 1)�0)] (35b)

In order to get an estimate �̂�,��� of the sampled propagation
model in beam-space, calibration of the beam-space trans-
formed measurements is conducted.�̂�,��� = ��,�−1 ⋅ � ⋅ � = ��,��� + ��,�−1 ⋅ ��� (36)

Considering the tensor of polarimetric measurements������, define his 4-mode unfolding� = [������]�(4) = [��,� ��,� ��,� ��,�] (37)

and utilising equation (36) for transformation and calibration
yields beam-space estimates for all 4 polarisation combina-
tions. �̂�,��� = ��,�−1 ⋅ � ⋅ ��,� (38a)�̂�,��� = ��,�−1 ⋅ � ⋅ ��,� (38b)�̂�,��� = ��,�−1 ⋅ � ⋅ ��,� (38c)�̂�,��� = ��,�−1 ⋅ � ⋅ ��,� (38d)

These vectors are concatenated in matrix ���.��� = [�̂�,��� �̂�,��� �̂�,��� �̂�,��� ] (39)

C. Beam-space Data Model
The data model in the calibrated beam-space is��� = �(�, �� �, ���) ⋅ � + ��� . (40)

Matrix � = [��,� ��,� ��,� ��,�] contains the polarimetric
path weights and matrix �(�, �� �, ���) ∈ ℂ�×� contains
the exponentials according to the angles and delays for each
path. �(�, �� �, ���) = �(�) ⋄ �(�� �) ⋄ �(���) (41)�(�) = exp (−�2��0 ⋅ �� ⋅ ��) ∈ ℂ��×��(���) = exp (−�2��0 ⋅ �� ⋅ ����) ∈ ℂ��×��(�� �) = exp (−�2��0 ⋅ �� ⋅ �� ��) ∈ ℂ��×��� = [0 … �� − 1]��� = [0 … �� − 1]��� = [0 … �� − 1]�
Estimation of the path’s AoA, AoD and TdoA based on the
data model in equation (40) is a 3-dimensional harmonic
retrieval problem.
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D. Harmonic Retrieval and Path Weight Estimation
Reshaping matrix ��� yields the tensor��� ∈ ℂ��×��×��×4, which is given by

��� = � ×1 �(���) ×2 �(�� �) ×3 �(�) ×4 �� . (42)

Tensor � ∈ ℂ�×�×�×� denotes the identity tensor. The first
three dimensions of tensor ��� feature shift invariance and
centro-Hermitian property. Thus the Unitary Tensor-ESPRIT
becomes applicable for estimation of �, ��� and �� � [15],
[16].

After inferring estimates for AoA, AoD and TdoA, the
matrix of polarimetric path weights can be estimated by the
best-linear-unbiased estimator (BLUE) [21]�̂ = (�̂��−1�̂)−1 �̂��−1 ⋅ ��� (43)

whereas �̂ = �(�̂� �, �̂��, �̂). Due to the transformation
according to equation (36), the noise’s second-order statistic is
varied, which is differently for each polarisation combination�, �. Hence, the BLUE has to be adapted accordingly�̂�,� = (�̂���,�−1�̂)−1 �̂���,�−1 ⋅ �̂�,��� (44)

with ��,� = ��,�−1������,�−�
the modified noise cov-

ariance matrix for each polarisation combination.

E. Sampling Step Size and Selection Matrices
The multi-dimensional convolution in equation (24) is

sampled by the measurement system. A process is observed in
each dimension, featuring a bandwidth which is related to the
system bandwidth in the respective domain. Hence, in order
to avoid aliasing, the Nyquist criterion has to be fulfilled by
proper selection of the sampling step sizes �� �0 , ���0 and �0.
A larger bandwidth increase the (Rayleigh) resolution, to the
cost of necessary denser sampling.

The process’ bandwidth related to the delay domain is de-
termined by the sounding signal bandwidth. Hence, the delay
domain sampling step size �0 has to be chosen accordingly at
the receiver.

The process’ bandwidth in the spatial domain is related to
the array aperture, which depends on the array radius and the
antenna pattern. The bandwidth will be increased, if high gain
antennas are utilised and/or the antenna is rotated on a large
circumference. Hence, smaller step sizes �� �0 and ���0 have to
be chosen. Selection of the sampling step size under practical
considerations can be tough due to e.g. mechanical limitations,
such that a certain array radius is hard to guarantee. Hence,
calibration measurements of the virtual UCA are necessary, in
order to investigate the spatial bandwidth and to deduce the
required sampling step size [26].

The step sizes has to be chosen, such that a band limited
process is present in the dimension’s beam-space. Considering
equation (36) and a band limited process, SNR problems occur
if calibration is carried out. Hence, it is necessary to select
signal areas in the beam-space featuring enough SNR for
proper calibration. This selection is described by the matrices�� ∈ ℝ��×��, ��� ∈ ℝ��×��, �� � ∈ ℝ��×��, which
entries are 1 to select a signal area and 0 elsewhere.

TABLE I: Simulation settings

AoA −5° 0° 5°
AoD 5° 0° −5°
TdoA 25 ns 25.5 ns 26.5 ns
Bandwidth 1 GHz
Center frequency 71.5 GHz
UCA radius 20 mm
Antennas Dual-polarimetric horn antenna [26]�� 101�� 45�� 45
No. Monte-Carlo runs 1000

V. Simulations

In order to compare the ML and beam-space ESPRIT
estimator, their root-mean-square error (RMSE) for various
noise powers is calculated from Monte-Carlo simulations. The
simulation settings are summarised in Table I. The number
of spatial sampling points �� and �� to fulfil the Nyquist
criterion was deduced empirically.

Synthetic measurement data are generated from equa-
tion (14), based on known parameter values. The paramet-
ers AoA, AoD and TdoA can be chosen randomly, but
the polarimetric path weights not necessarily. Generally, the
path weight’s magnitude correspondence to the transmission
attenuation. For a single bounce reflection, the bi-static radar
equation can be utilised to calculate this attenuation according
to a given bi-static range �� = ��� + �� �, the polarimetric
radar cross section (RCS) ��,� and the centre frequency’s
wavelength �� [27]��,� = √√√⎷ �2� ⋅ ��,�(4�)3 ⋅ �2�� ⋅ �2� � �−�2�(���+���)�−1� . (45)

For the conducted simulations, the polarimetric RCS is set to��=� = −30 dB and ��≠� = −45 dB, and the bi-static range is��� = �� � = ��/2 . Furthermore, the model order (number
of paths �) is assumed as known.

The calculated RMSEs for the ML and beam-space ESPRIT
are depicted in Fig. 2. Note, that the estimated parameters
are normalised to 2�. Additionally, the Cramér-Rao lower
bound (CRLB) is shown, indicating the lowest achievable
RMSE for any unbiased estimator [21]. As becomes visible,
the RMSE of the beam-space ESPRIT does not achieve the
CRLB, indicating that the estimator is not efficient. On the
other hand, the ML estimator achieves the CRLB and thus
is considered as an efficient estimator. Because the beam-
space ESPRIT assumes a simplified data model and the
bandwidth was reduced due to the beam-space transformation,
the estimation performance is naturally degraded compared
to the ML estimator. Furthermore, for noise powers in the
range from 30 dB to 40 dB, the RMSE curves of the beam-
space ESPRIT do not show a settling behaviour. Therefore,
additional simulations have been carried out considering a
single path only, with the following parameter settings: AoA
0°, AoD 0°, TdoA 25.5 ns. The calculated RMSEs are depicted
in Fig. 3. Obviously, the curves of the beam-space ESPRIT do
not show the settling. Hence, the settling is assumed to result
from the 3 path scenario setting.
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Fig. 2: RMSE of parameter estimates in comparison to the CRLB for triple
path scenario. Parameter estimates are normalised to 2�
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Fig. 3: RMSE of parameter estimates in comparison to the CRLB for single
path scenario. Parameter estimates are normalised to 2�

VI. Conclusion

In this paper, system identification in conjunction with high
resolution parameter estimation was motivated. The physical
system under identification is the propagation channel, which
is sampled by a MIMO system in spatial and delay domain.
Here, sampling of the spatial domain (angle domain) by
rotating antennas at Tx and Rx side has been considered.
Parameters of a propagation model are subsequently estim-
ated from the sampling data, with a resolution higher than
the Rayleigh resolution limit. A data model based on the
multi-dimensional convolution of the propagation model and
the measurement system model was derived, describing the
incorporation of the propagation parameters in the sampling
data. The data model is required to solve the inverse problem,
which arises due to the parameter estimation task. A solver
for the inverse problem has been proposed, which was derived
from the maximum-likelihood principle.

Applying beam-space transformation and subsequent calib-
ration, the parameter estimation task transforms into a multi-
dimensional harmonic retrieval problem. This problem can
be solved by the Unitary Tensor-ESPRIT, which is com-
putationally simpler than the enumerative-search based ML
estimator. Beam-space pre-processing requires a band limited
process in all dimensions. Hence, the sampling step size in
angle and delay domain has to be chosen in accordance
to the Nyquist criterion. Also, the complete beam-space is
commonly not usable for parameter estimation, because SNR
problems occur due to the presence of band limited processes.
Besides its computational simplicity in comparison to the ML
estimator, the beam-space ESPRIT assumes simplifications of
the data model. The full-polarimetric antenna pattern is not
incorporated in the estimator. Only the co-polar pattern is
considered and the cross-polar pattern is neglected. Hence, a
large cross-polar discrimination is assumed, which is difficult
to guarantee in real applications. However, this simplification
introduces a mismatch between measurements and the data
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model, which degrades the quality of the parameter estimates.
Monte-Carlo simulations using synthetic data were carried

out, in order to compare the ML and beam-space ESPRIT
in terms of the achievable RMSE for increasing SNR. It
turned out, that the beam-space ESPRIT is not an efficient
estimator, because the Cramér-Rao lower bound is not attained
for increasing SNR. On the other hand, the ML based estimator
attends the CRLB and therefore outperforms the beam-space
ESPRIT in terms of the achievable RMSE.
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