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Abstract— In this paper, we propose an advanced control 

scheme using neural second order sliding mode (NSOSMC) 

and adaptive neuro-fuzzy inference system space vector 

modulation (ANFIS-SVM) strategy for a doubly fed induction 

generator (DFIG) integrated into a wind turbine system 

(WTS). The used hybrid control system composed of artificial 

intelligence techniques and second-order sliding mode applied 

to ensure better powers performances provided by the WTS. 

The obtained simulation results showed that the proposed 

control structure has active and reactive powers with low 

ripples and low stator current harmonic distortion. 
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I. INTRODUCTION 

Doubly fed induction generator wind turbines with 

converters rated at about 25-30% of the generator rating are 

becoming increasingly popular [1]. Control and operation of 

DFIG have been the subject of intense research during the 

last few years [2]. However, the stator of the DFIG is 

connected to the energy grid and the rotor is connected to 

AC-DC-AC converter [3]. Various strategies have been 

proposed for studying the behaviour of DFIG based WTS 

during ordinary operation [4]. 

In the control system, the indirect vector control (IVC) 

using proportional-integral (PI) regulators is a traditional 

strategy used to control DFIG-based WTSs. However, PI 

regulator performance is highly dependant on the tuning of 

parameters and accurate tracking of angular information of 

stator flux voltage. In [5], the IVC strategy gives more 

harmonic distortion of rotor current and power ripples of 

DFIG-based WTSs. 

For high performance and robust control of DFIG, a 

sliding mode controller (SMC) was studied in the literature 

[6-9]. It is a high frequency switching control strategy for 

nonlinear systems with uncertainties. It can offer much good 

performances against unmodeled dynamics, insensitivity to  
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parameters variation, and fast dynamic response. Fuzzy 

logic controller (FLC) and SMC technique are combined to 

control DFIG [10]. 

Since the pulse width modulation (PWM) strategy is 

widely used in control of the AC machine, especially for 

scalar control where the stator voltage and frequency can be 

controlled with the minimum online computational 

requirement. The PWM technique is simple and easy to 

implement. However, this method gives more total harmonic 

distortion (THD). On the other hand, the SVM strategy 

gives 15 % more voltage output compare to the PWM 

strategy and minimizes the THD value of stator current. 

Since the SVM strategy of electrical drives has become 

an attracting topic in research and academic community 

over the past decade. Nevertheless, this type of control has 

essential disadvantages and advantages. The basic 

disadvantages of the SVM strategy are the current ripple. In 

the aim to improve the performance of the electrical drives 

based on SVM, adaptive neuro-fuzzy inference system SVM 

(ANFIS-SVM) strategy is proposed in this work. 

In [11], the author proposed a new SVM strategy based 

on calculating of maximum and minimum of three-phase 

voltages. Fuzzy logic (FL) and two-level SVM strategy are 

combined to control the DFIG [12].  In [13], the authors 

proposed a three-level FSVM technique to minimize the 

harmonic distortion of stator current. In [14], an reactive and 

stator active power proportional-integral controllers and 

four-level FSVM were combined to reduces the 

electromagnetic torque ripples, active and reactive power 

ripples. In [15], a modified SVM technique was proposed 

based on artificial neural networks (ANNs) control to 

regulate the torque and active power of the DFIG. 

In this article, two different techniques of a DFIG will be 

simulated and compared with each other; conventional IVC 

with PWM strategy (IVC-PWM) and NSOSMC with 

ANFIS-SVM strategy (NSOSMC-ANFIS-SVM). The 

advantages of the proposed technique will be tinted by 

studying the effect of ripples performance. 

II. WIND TURBINE 

The input power of the wind turbine is [16, 17]: 

vSP wv
35.0                                                               (1)

       

 

Where ρ is air density, Sw is wind turbine blades swept area 

in the wind, v is wind speed. 

The output power of wind turbine is: 

vpm PCP .                                                                     (2) 
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Cp can be described as: 
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where Cp is the wind turbine power conversion efficiency. λ 

is the tip speed ratio. β is the blade pitch angle in a pitch-

controlled wind turbine. R is blade radius. Ω is angular 

speed of the turbine.  
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where, C1=0.5176, C2=116, C3=0.4, C4=5, C5=21, 

C6=0.0068. 

The torque produced by the turbine is expressed in the 

following way: 

t

t

t
t CvR

P
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
                                       (6) 

where, Ct is the torque coefficient expressed by: 
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p
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C
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III. MODEL OF DFIG 

The traditional equations of flux and voltages for the DFIG 

in a d-q synchronously rotating reference frame can be 

written as follows [18, 19]. 
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(8) 
where: Idr and Iqr are the rotor currents 

Ids and Iqs are the stator currents 

Vds and Vqs are the stator Voltages 

Vdr and Vqr are the rotor voltages 

Rr is the rotor resistance 

Rs is the stator resistance 
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where: Lr is the inductance of the rotor 

Ls is the inductance of the stator 

M is the mutual inductance 

Ѱdr and Ѱqr is the rotor fluxes 

Ѱqs and Ѱds is the stator fluxes. 

The rotor and stator angular velocities are linked by the 

following relation: 

rs                                                                   (10) 

ω: is the mechanical pulsation of the DFIG 

ωs : is the electrical pulsation of the stator. ωr is the rotor 

one. 

The electrical model of the DFIG is completed by the 

following mechanical equation: 
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The torque can be written as follows: 

)..(
2

3
dsqrqsdr

s

e II
L

M
pT  

                               

 (12) 

Tr is the load torque, Ω is the mechanical rotor speed, J is 

the inertia, f is the viscous friction coefficient, and p is the 

number of pole pairs. 

The stator side reactive and active powers are defined as: 
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where: Ps  is the stator active power 

Qs is the stator reactive power. 

 

IV. INDIRECT VECTOR CONTROL 

In this section, we use a Park reference frame linked to the 

stator flux (Fig. 1). The detailed indirect vector control 

(IVC) of the DFIG has been studied in the literature [20-22]. 

The control stator active power and reactive power of the 

DFIG directly connected through the stator windings to the 

grid, is shown in Fig. 2. Therefore, we control the reactive 

and active powers axis separately by adding PI controllers in 

each loop. A control block diagram is shown in Fig. 3. In 

[23], a IVC strategy with two-level FSVM technique was 

proposed to regulate stator reactive power and 

electromagnetic torque.   

sdsqs   ,0                                                            (14) 









ssds

qs

V

V



0

                                                                 

(15) 

















qr

s

qs

s

s
dr

s

ds

I
L

M
I

L
I

L

M
I



                         

                        (16) 

The expression of the rotor voltages becomes: 
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The expression of the rotor fluxes and powers becomes: 
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Fig. 1 Indirect vector control technique. 
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Fig. 2 Block diagram of the DFIG with IVC control. 

 

Fig. 3 Structure of IVC scheme. 
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V. ANFIS-SVM STRATEGY 

This paper presents a new technique of two-level SVM 

using adaptive network-based fuzzy inference system 

(ANFIS) control (2L-ANFIS-SVM). This proposed 

technique is simple and easy to implement [24, 25]. 

However, the ANFIS controller is the combination of neural 

networks and fuzzy logic. This hybrid combination enables 

to minimize the complexity of power intelligent system. The 

ANFIS controller was developed in the early 1990s. The 

advantages of the ANFIS controller is not needed to 

mathematical model of system and easy to implement. Since 

the SVM technique is not based on separate calculations for 

each arm of the inverter, but the determination of a global 

control vector approximated in an over modulation 

techniques. Like every control technique has some 

advantages and disadvantages.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The advantages of the traditional SVM technique are 

presented in [26]. On the other hand, this strategy is difficult 

to implement compared to traditional PWM strategy. A new 

SVM technique for a two-level inverter is proposed in [12, 

23]. This new SVM strategy based on calculation of 

maximum and minimum of three-phase voltages (Va, Vb, Vc).  

The block diagram of the proposed SVM strategy for the 

two-level inverter is as shown in Fig. 4. Fig. 5 represents the 

block diagram of the hysteresis comparators for the two-

level inverter. The F1(u), F2(u) and F2(u) is given by: 
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Fig. 4 Simulation block of the proposed SVM technique. 

 

Fig. 5 Block diagram of the hysteresis comparators. 
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Two parameters characterized the proposed SVM 

technique: 

 The index of modulation (m): defined by the ratio 

of the carrying and reference wave frequencies. 

 The modulation factor (r): the amplitude ration. 

The principle of the ANFIS-SVM strategy is similar to 

2L-SVM technique. However, the hysteresis controllers are 

replaced by ANFIS controllers and this proposed technique 

has the advantage of simplicity and easy implementation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

On the other hand, the ANFIS-SVM strategy gives more 

minimum harmonic distortion of stator current compared to 

conventional SVM strategy.  

This strategy reduces the ripple of electromagnetic torque, 

stator reactive and active power. The structure of SVM 

based on ANFIS controllers is shown in Fig. 6. Fig. 7 

represents the block diagram of the ANFIS hysteresis 

comparators for two-level ANFIS-SVM strategy. The block 

diagram of ANFIS controllers based hysteresis comparators 

is shown in Fig. 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Simulation block of the proposed ANFIS-SVM technique. 

 

Fig. 7 Block diagram of the ANFIS hysteresis comparators. 
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The membership function definition for the input variables 

and output variables is given by Fig. 9. 

The FLC rules for the proposed system are given in Table 

I [27, 28]. Table II shows the parameters of FLC controller. 

 
TABLE I THE FLC RULES 

e NB NM NS EZ PS PM PB 

∆e 

NB NB NB NB NB NM NS EZ 

NM NB NB NB NM NS EZ PS 

NS NB NB NM NS EZ PS PM 

EZ NB NM NS EZ PS PM PB 

PS NM NS EZ PS PM PB PB 

PM NS EZ PS PM PB PB PB 

PB EZ PS PM PB PB PB PB 

 
TABLE II PARAMETERS OF FLC CONTROLLER 

Fis type Mamdani 

And method Min 

Or method Max 

Implication Min 

Aggregation Max 

Defuzzification Centroid  

 
The training used is that of the algorithm, Gradiant 

descent with momentum & Adaptive LR. The convergence 

of the network in summer obtained by using the value of the 

parameters grouped in Table III. 

TABLE III PARAMETERS OF THE ALR ALGORITHM 

Parameters of the ALR Values 

Number of hidden layer 8 

TrainParam.Lr 0.002 

TrainParam.show 50 

TrainParam.eposh 300 

Coeff of acceleration of convergence 
(mc) 

0.9 

TrainParam.goal 0 

TrainParam.mu 0.9 

Functions of activation Tensing, Purling, gensim 

VI. NEURO-SECOND ORDER SLIDING MODE CONTROLLER 

A. Second-order Sliding Mode Controller 

The basic idea of the SMC is detailed in [29, 30]. The SMC 

method is developed from variable structure control to solve 

the disadvantage of other designs of nonlinear control 

systems. However, the design of SMC strategy supports the 

desired stability problems and performance in a systematic 

way [31]. The following three steps are necessary for the 

implementation of the SMC technique: 

 The choice of the surface, 

 The convergence condition, 

 Calculation of the control law. 

In this paper, we use the SOSMC strategy applied to the 

DFIG machine. The advantage of the SOSMC is reducing 

chattering nonlinearities, and robustness. We choose the 

error between the reference stator energies and measured as 

second-order sliding mode surfaces, so we can write the 

following expression: 
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We derived the above errors, we obtain 
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where: α = -Vs.M/Ls 

If we define the A1 and A2 functions as follows. 
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Thus we have 
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On driving the relationship of equation (25) yields: 
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Fig. 9 Fuzzy sets and its memberships functions. 
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A. Neuro-second Order Sliding Mode Controller 

Artificial neural network (ANN) is an interconnected group 

of artificial neurones [31]. The application of ANN attracts 

the attention of many scientists from all over the world [32]. 

This intelligent technique has many advantages, it is simple 

architecture, inexact input data, the possibility of 

approximating non-linear function, insensitivity to the 

distortion of the network, easy of training and generalization 

[33, 34].  
And: 
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To ensure the convergence of regulators in the infinity of 

time constants and are chosen to satisfy the following 

inequality: 
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                                              (31) 

The SOSMC control of a DFIG based on SVM inverter is 

shown in Fig. 10. 

In this section, we use the Gradient Descent with 

Momentum & Adaptive LR. This algorithm is a network 

training function that updates weight and bias values 

according to gradient descent momentum and an adaptive 

learning rate. In order to eliminate the chattering 

phenomenon and improve the SOSMC, we propose to use 

NSOSMC control. The NSOSMC control of a DFIG based 

on NSVM inverter is shown in Fig. 11. 

The NSOSMC control is a modification of the SOSMC, 

where the switching controller term sign(S(x)), has been 

replaced by a neural technique control input as given by Fig. 

12 [35]. 

Fig. 10 7SOSMC with ANFIS-SVM strategy of DFIG. 

 

Fig. 11 7NSOSMC with ANFIS-SVM strategy of DFIG. 
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Fig. 12 Block diagram of NSOSMC strategy. 

 

Since, the neural network contains three layers: output 

layer, input layer and hidden layers. The structure of the 

proposed neural controllers was a network with one linear 

input node, 8 neurons in the hidden layer, and one neuron in 

the output layers.  

Fig. 13 shows the neural network training performance of 

the neural controller for reactive and active powers. Fig. 14 

shows the internal structure of the neural controller for 

reactive and active powers. Fig. 15 block diagram of the 

internal structure of the hidden layer. 

 
Fig. 13 Neural network training performance. 

 

 
Fig. 14 The internal structure of neural controllers. 

 

 
Fig. 15 Block diagram of the internal structure of hidden layer. 

 

VII. SIMULATION RESULTS 

In this section, simulations are carried out with a 1.5MW 

DFIG machine attached to a 398V/50Hz grid, using the 

Matlab/Simulink software. Parameters of the DFIG are 

given in Table IV. Two control strategies, IVC-PWM and 

NSOSMC-ANFIS-SVM control, are simulated and 

compared regarding reference tracking, stator current 

harmonics distortion, powers ripples, and robustness against 

DFIG parameter variations. 

 
TABLE IV THE DFIG PARAMETERS  

Parameters Rated Value Unity 

Nominal power 1.5 MW 

Stator voltage 398 V 

Stator frequency 50 Hz 

Number of pairs poles 2  

Stator resistance 0.012 Ω 

Rotor resistance 0.021 Ω 

Stator inductance 0.0137 H 

Rotor inductance 0.0136 H 

Mutual inductance 0.0135 H 

Inertia 1000 Kg m2 

Viscous friction  0.0024 Nm/s 

 

A. Reference Tracking Test(RTT) 

The objective of this test is the study of the two proposed 

controls behaviour in reference tracking. The simulation 

results are presented in Figs. 16-21. As it’s shown by Figs. 

16-17, for the two proposed strategies, the reactive and 

active powers track almost perfectly their references values 

but with important response time for the IVC-PWM control. 

On the other hand, Figs. 19-20 show the harmonic 

spectrums of stator current of the DFIG obtained using Fast 

Fourier Transform (FFT) method for both techniques. It can 
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be clearly observed that the THD value is reduced for 

NSOSMC-ANFIS-SVM control. Table V shows the 

comparative analysis of the THD values of stator current. 

 
TABLE V COMPARATIVE ANALYSIS OF THE THD (RTT) 

 THD (%) 

IVC-PWM NSOSMC-ANFIS-SVM 

Stator current 0.84 0.13 

 
Figs. 22-24 show the zoom in the active power, reactive 

power and stator current of the IVC-PWM and NSOSMC-

ANFIS-SVM strategies. This figure shows that the ripple of 

active and reactive powers for the NSOSMC-ANFIS-SVM 

control scheme has almost equal to zero. Therefore it can be 

considered that the two proposed strategies have a very good 

performance for this test. 
 

 
 

Fig. 16 Active power (RTT). 
 

 
 

Fig. 17 Reactive power (RTT). 

 

 
Fig. 18 Stator current (RTT). 

 

 
Fig. 19 Electromagnetic torque (RTT). 

 
 

Fig. 20 THD of stator current for the IVC-PWM control (RTT). 

 

 
Fig. 21 THD of stator current for the NSOSMC-ANFIS-SVM control 

(RTT). 

 
 

Fig. 22 Zoom in the active power (RTT). 
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Fig. 23 Zoom in the reactive power (RTT). 
 

 
Fig. 24 Zoom in the stator current (RTT). 

 

 
 

Fig. 25 Zoom in the electromagnetic torque (RTT). 

B. Robustness Test(RT) 

In order to test the robustness of the proposed techniques, 

the DFIG parameters have been intentionally changed such 

as the values of the resistances Rs and Rr are multiplied by 2 

and the values of the inductances Ls and Lr are divided by 2. 

Simulation results are presented in Figs. 26-30. As it’s 

shown by these figures, these variations present a clear 

effect on active power, reactive power and stator current 

curves and that the effect appears more important for the 

IVC-PWM than that with NSOSMC-ANFIS-SVM control. 

On the other hand, these results show that the THD value of 

stator current in the NSOSMC-ANFIS-SVM control scheme 

has been reduced significantly. Table VI shows the 

comparative analysis of THD values. Thus, it can be 

concluded that the proposed NSOSMC-ANFIS-SVM 

control scheme is more robust than the IVC-PWM one. 

 
TABLE VI COMPARATIVE ANALYSIS OF THE THD (RT) 

 THD (%) 

IVC-PWM NSOSMC-ANFIS-SVM 

Stator current 1.45 0.18 

 

 
Fig. 26 Active power (RT). 

 

 
Fig. 27 Reactive power (RT). 

 

 
 

Fig. 28 Stator current (RT). 

 

 
 

Fig. 29 Electromagnetic torque (RT). 
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Fig. 30 THD of stator current for the IVC-PWM control (RT). 

 

 
 

Fig. 31 THD of stator current for the NSOSMC-ANFIS-SVM control (RT). 

 
 

Fig. 32 Zoom in the active power (RT). 
 

 

 
 

Fig. 33 Zoom in the reactive power (RT). 
 

 
Fig. 34 Zoom in the stator current (RT). 

 

 
 

Fig. 35 Zoom in the electromagnetic torque (RT). 

VIII. CONCLUSION 

A novel robust strategy based on variable structure method 

of a DFIG has been presented in this article. The DFIG 

connected directly to the grid by the stator and fed by an 

ANFIS-SVM strategy on the rotor side. Our objective was 

the simulation of a neural second order sliding mode control 

technique with ANFIS-SVM technique of stator active and 

stator reactive powers generated by the stator side of the 

DFIG in order to ensure high performances of the DFIG 

machine and make the system insensible with the external 
disturbances and the parametric variations. Simulation 

results have confirmed that the proposed NSOSMC-ANFIS-

SVM operates with a very lower ripples power and reduced 

of the THD value of stator current in term of tracking and 

robustness test. Basing on all these results it can be 

concluded that robust strategy as NSOSMC-ANFIS-SVM 

can be a very good-looking result for the strategy using 

DFIG such as wind energy transfer systems. 
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