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Abstract—This paper presents a new active building block
(ABB) called voltage gain-controlled modified current feedback
amplifier (VGC-MCFOA) based on bipolar junction transistor
technology. The versatility of the new ABB is demonstrated in
new first-order all-pass filter structure design employing single
VGC-MCFOA, single grounded capacitor, and three resistors.
Introduced circuit provides all four possible transfer functions at
the same configuration, namely current-mode, transimpedance-
mode, transadmittance-mode, and voltage-mode. The pole fre-
quency of the circuit can be easily tuned by means of DC
bias currents. The theoretical results are verified by SPICE
simulations based on bipolar transistor arrays AT&T ALA400-
CBIC-R process parameters.

Keywords—Voltage gain-controlled modified CFOA, MCFOA,
electronically tunable filter, four-mode circuit, all-pass filter.

I. INTRODUCTION

After the second-generation current conveyor (CCII) was
introduced by Sedra and Smith in 1970 [1], it became the most
versatile active building block (ABB) used for analog signal
processing and the is basic ABB of many other active elements
such as the composite current conveyor [2] done by an
interconnection of two CCIIs, which was recently introduced
as modified current feedback operational amplifier (MCFOA)
[3]–[7] or the conventional CFOA [8] (CCII followed by unity
gain voltage buffer - UGVB). It should be noted that, the
MCFOA is different from the conventional CFOA defined in
[8], since the W terminal current of the MCFOA is copied to
the Y terminal in the opposite direction. However, it is well
known that the Y-terminal current of the conventional CFOA is
equal to zero. Short list of additional CCII-based ABBs is the
following: the second-generation current-controlled conveyor
(CCCII) [9], where the intrinsic resistance of X-terminal can
be tuned, the differential difference CC (DDCC) [10] and
its more versatile derivative the so-called universal current
conveyor (UCC) [11]–[14], the dual-X CCII (DXCCII) [15],
which is an interconnection of CCII and inverting CCII
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in which the Y-terminal is joined, the current differencing
buffered amplifier (CDBA) [16] employing current differenc-
ing unit (CDU) based on two CCIIs and UGVB, or the
universal voltage conveyor (UVC) [17] based on two CCIIs
and differential UGVB.

Recently the further research has been focused on CCII-
based ABBs employing operational transconductance amplifier
(OTA) [18] at their output stage. Probably the most known
active element from this group is the current differencing
transconductance amplifier (CDTA) [19], but other versatile
elements such as the current-conveyor transconductance am-
plifier (CCTA) [20], where CCII is followed by an OTA,
the differential-input buffered and transconductance amplifier
(DBTA) [21] in which an interconnection of two CCIIs are
followed by UGVB and OTA, the current follower transcon-
ductance amplifier (CFTA) [22], which employs a CCII with
grounded Y-terminal and an OTA, the current backward
transconductance amplifier (CBTA) [23], which is a specific
interconnection of CCII and OTA, or the z-copy current-
controlled current inverting transconductance amplifier (ZC-
CCCITA) [24] have also received considerable attention.

For easy tunability of the circuit parameters using electrical
signals by either voltage and/or current and to increase the uni-
versality of the conventional CCII, the electronically-tunable
CCII (ECCII) [25], [26], programmable current amplifier
(PCA) [27], K-gain CCII [28], the voltage and current gain
CCII (VCG-CCII) [29], and the variable gain current conveyor
(VGCCII) [30] were introduced.

In this paper we present a novel ABB called voltage
gain-controlled modified current-feedback operational am-
plifier (VGC-MCFOA). The VGC-MCFOA joins the volt-
age gain control feature of the VCG-CCII in the conven-
tional MCFOA [3]–[7]. To demonstrate the usefulness of
the VGC-MCFOA, a new first-order all-pass filter (AFP)
structure is proposed, which operates in current-mode (CM),
transimpedance-mode (TIM), transadmittance-mode (TAM),
and voltage-mode (VM), respectively. To prove the theoretical
analysis, SPICE simulations based on bipolar transistor arrays
AT&T ALA400-CBIC-R process parameters are given.

II. CIRCUIT DESCRIPTION

The voltage gain-controlled modified current feedback oper-
ational amplifier (VGC-MCFOA) is a five-terminal ABB and
its circuit symbol is shown in Fig. 1(a). Compared to the
conventional MCFOA presented in [3]–[7], its voltage transfer
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Fig. 1. Bipolar implementation of VGC-MCFOA

from the Y to X terminal can be easily electronically tuned by
means of the voltage gain h. Hence, the relations between the
individual terminals of the VGC-MCFOA can be described by
the following hybrid matrix:

iY
vX
iZ1
iZ2
vW

 =


0 0 0 0 −α1

hβ1 0 0 0 0
0 α2 0 0 0
0 −α3 0 0 0
0 0 β2 0 0




vY
iX
vZ1
vZ2
iW

 . (1)

The frequency-dependent non-ideal current gains αj for
j = {1, 2, 3} and voltage gains βk for k = {1, 2} are
ideally equal to unity. Using a single-pole model [4], they can
be defined as:

αj(s) =
αoj

1 + sταj

, (2)

βk(s) =
βok

1 + sτβk

, (3)

where αoj and βok are DC current and voltage gains of the
element, respectively. The bandwidths 1/ταj

and 1/τβk
on the

order of a few gigarad/s in current technologies are ideally
equal to infinity. At low and medium frequencies i.e., f �
(1/(2π))× min{1/ταj

, 1/τβk
}, Eqs. (2) and (3) turn to:

αj(s) ∼= αoj = 1− εαij
, (4)

βk(s) ∼= βok = 1− εβvk
, (5)

where εαij
and εβvk

are the current and voltage tracking errors,
whereas |εαij

| � 1 and |εβvk
| � 1, respectively.

The basic idea for implementation of the proposed VGC-
MCFOA is shown in Fig. 1(b), where the OTA1 and OTA2

are used to control the voltage gain h and two CCII+/–
represent the conventional MCFOA. Subsequently, the bipolar
implementation of the VGC-MCFOA is shown in Fig. 1(c).
The voltage gain control stage is formed by two simple
differential pair amplifiers (transistors Q1–Q6) and transistors
Q7–Q32 form the two CCII+/– based MCFOA, respectively.
Here it is worth mentioning that the voltage gain control of
VCG-CCII [29] was implemented using the same technique.
For the implementation in Fig. 1(b) the voltage gain h can be
expressed as:

h =
gm1,2

gm5,6

, (6)

where gm1,2 = IB1

2VT
and gm5,6 = IB2

2VT
. Here, the VT is the

thermal voltage (approximately 26 mV at 27◦C) and the IB1

and IB2 are control currents adjusting the transconductances
gm1,2

and gm5,6
, respectively. Therefore, the voltage gain h in

(6) can be given as:

h =
IB1

IB2
. (7)

From (7) it is obvious that the proposed VGC-MCFOA
can be easily adjusted electronically by either IB1 and/or IB2

currents.



III. PROPOSED ALL-PASS FILTER

A. Ideal Case Study

The proposed four-mode APF is shown in Fig. 2. Consider-
ing the ideal VGC-MCFOA (i.e. αj and βk are unity), based
on the input selected two following cases can be considered:
Case I: If Iin1 = Iin2 = Iin, Vin = 0 (grounded), and

assuming R2 = R3 = R, then we can obtain the following
transfer functions (TFs):

TCM(s) =
Iout
Iin

=
sCR1 − h
sCR1 + h

=
IB2sCR1 − IB1

IB2sCR1 + IB1
, (8)

TTIM(s) =
Vout
Iin

= R · sCR1 − h
sCR1 + h

= R · IB2sCR1 − IB1

IB2sCR1 + IB1
.

(9)
Case II: If the input of the APF is Vin, Iin1 = Iin2 = 0,

and assuming R1 = R2 = R, then for the circuit the following
TFs can be obtained:

TTAM(s) =
Iout
Vin

= − 1

R
·sCR3 − h
sCR3 + h

= − 1

R
·IB2sCR3 − IB1

IB2sCR3 + IB1
,

(10)

TVM(s) =
Vout
Vin

= −sCR3 − h
sCR3 + h

= −IB2sCR3 − IB1

IB2sCR3 + IB1
. (11)

Thus, from Eqs. (8)–(11) it is seen that by suitable selection
of input and output all four possible modes, i.e. current-
, transimpedance-, transadmittance-, and voltage-mode first-
order APF can be realized with the same circuit topology.

The phase responses of TFs in (8) and (9) are calculated as
follows:

ϕCM(ω) = ϕTIM(ω) = 180◦ − 2arctg

(
1

h
· ωCR1

)
=

= 180◦ − 2arctg

(
IB2

IB1
· ωCR1

)
, (12)

and phase responses of TFs in (10) and (11) are given as:

ϕTAM(ω) = ϕVM(ω) = −2arctg

(
1

h
· ωCR3

)
=

= −2arctg

(
IB2

IB1
· ωCR3

)
. (13)

Hence, the phases of TFs in (8) and (9) alter from 180◦ to
0◦ while according to (10) and (11) the phase shift change
between 0◦ to –180◦, respectively.

Consequently, the zero (ωz) and pole (ωp) frequencies of
all four TFs can be found as:

ω(CM,TIM)z = ω(CM,TIM)p = h · 1

CR1
=
IB1

IB2
· 1

CR1
, (14)

ω(TAM,VM)z = ω(TAM,VM)p = h · 1

CR3
=
IB1

IB2
· 1

CR3
. (15)

From Eqs. (14) and (15) it is clearly seen that the pole/zero
frequency values can be easily tuned by means of the bias
currents IB1 and/or IB2.
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Fig. 2. Proposed electronically tunable all-pass filter using VGC-MCFOA

B. Non-Ideal Analysis

Taking into account non-idealities of the VGC-MCFOA,
TFs (8) and (9) in Case I of the filter convert to:

TCM(s) =
Iout
Iin

= α3R3 ·
sCR1 − β1h

sCR1R3 + α1α2β1β2hR2
=

= α3R3 ·
IB2sCR1 − IB1β1

IB2sCR1R3 + IB1α1α2β1β2R2
, (16)

TTIM(s) =
Vout
Iin

=
α2β2R2R3 · (sCR1 − hβ1)

sCR1R3 + α1α2β1β2hR2
=

=
α2β2R2R3 · (IB2sCR1 − IB1β1)

IB2sCR1R3 + IB1α1α2β1β2R2
, (17)

and non-ideal phase responses from TFs (16) and (17) can be
expressed as:

ϕCM(ω) = ϕTIM(ω) = 180◦ − arctg

(
IB2

IB1
· ωCR1

β1

)
−

−arctg

(
IB2

IB1
· ωCR1R3

α1α2β1β2R2

)
. (18)

The zero and pole frequencies in Eq. (14) change to:

ω(CM,TIM)z =
IB1

IB2
· β1
CR1

, ω(CM,TIM)p =
IB1

IB2
·α1α2β1β2R2

CR1R3
.

(19)
From Eq. (19), the active and passive sensitivities of zero

and pole frequencies are given as:

S
ω(CM,TIM)z

IB1,β1
= −Sω(CM,TIM)z

IB2,C,R1
= 1, S

ω(CM,TIM)z

α1,α2,α3,β2,R2,R3
= 0,

(20)

S
ω(CM,TIM)p

IB1,α1,α2,β1,β2,R2
= −Sω(CM,TIM)p

IB2,C,R1,R3
= 1, S

ω(CM,TIM)p
α3 = 0,

(21)
and it is evident that the sensitivities of active parameters and
passive components for ω(CM,TIM)z and ω(CM,TIM)p are at
maximum unity in relative amplitude. The same study can
also be done for the Case II with similar results.

IV. SIMULATION RESULTS

First, the proposed VGC-MCFOA in Fig. 1(c) has been
further investigated in SPICE software. In the design the tran-
sistor model parameters NR100N (NPN) and PR100N (PNP)
of bipolar arrays ALA400-CBIC-R from AT&T were used
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TABLE I
PARAMETERS OF VGC-MCFOA SHOWN IN FIG. 1(C) (NOTE: # AT h = 1)

Parameters Values
iY/iW gain (α1) 1.001
vX/vY gain (β1)# 0.995
iZ1/iX gain (α2) 0.982
iZ2/iX gain (α3) 1.001
vW/vZ1 gain (β2) 0.999
iY/iW f–3dB 49.16 MHz
vX/vY f–3dB

# 108.15 MHz
iZ1/iX f–3dB 89.22 MHz
iZ2/iX f–3dB 67.34 MHz
vW/vZ1 f–3dB 879.47 MHz
RY 55.35 kΩ

CY 1.919 pF
RX 42.01 Ω

RW 36.96 Ω

RZ1 94.31 kΩ

CZ1 2.047 pF
RZ2 97.61 kΩ

CZ2 1.272 pF

[31]. The DC supply voltages are +VCC = −VEE = 2.5 V.
Bias current IO = 400 µA has been chosen and IB1, IB2 were
set to 101 µA and 100 µA, respectively, to obtain voltage
gain h = 1 precisely. The maximum values of terminal
voltages and terminal currents without producing significant
distortion were determined to be ±106.7 mV and ±16.23 mA,
respectively. Evaluated DC current and voltage gains, f–3dB
frequencies of transfers, and values of the X and W terminal
parasitic resistances (in series) and Z and Y terminal parasitic
resistances and capacitances (in parallel) shown in Fig. 3 are
given in Table I. The total power dissipation of the proposed
VGC-MCFOA was found to be 23.1 mW.

Simulated voltage gain h responses between Y and X
terminals is demonstrated in Fig. 4. In case of (A), the
external bias current IB1 has been varied in large interval from
10 µA to 1 mA (equal to gain h = 0.1 to 10) at constant
IB2 = 100 µA. From Fig. 4 it can be clearly seen that due to
the above mentioned non-idealities of the VGC-MCFOA, the
obtained voltage gain is in reduced range 0.101÷8.71. Hence,
to overcome the the large variation of control current IB1 and
simultaneously obtain the same gain range i.e. h = 0.1 to 10,
the control current IB1 has been varied in reduced interval
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Fig. 4. Voltage gain h responses vs. applied bias currents
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Fig. 5. Electronical tunability of the pole frequency by bias current IB1 based
on case (A) at constant IB2 = 100 µA: (a) current-mode, (b) transimpedance-
mode first-order APF responses

from 20 µA to 200 µA together with IB2 according to Eq.
{220 µA−IB1}. In this case (B), the obtained voltage gain is
in range 0.102÷9.869, which is much closer to the theoretical
one.

Using the bipolar implementation of the VGC-MCFOA the
proposed APF from Fig. 2 has also been simulated in the
SPICE software. The ideal and simulated gain and phase
responses and electronical tunability of both current- and
transimpedance-mode transfers based on case (A) discussed
above i.e. by the bias current IB1 at constant IB2 = 100 µA,
are demonstrated in Fig. 5. In the simulations the passive
element values were selected as C = 5 nF, R1 = R2 = R3 =
1 kΩ and the voltage gain h has been varied as h = {0.53; 1;
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(f0 = 29.9 kHz) for the transimpedance-mode first-order APF response
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 Fig. 7. THD variation of the proposed APF for both current-

and transimpedance-mode responses against applied input current at
f0 = 29.9 kHz

2.95; 8.46} to set the pole frequency of the proposed circuit
as f0 ≈ {10.2; 29.9; 100; 300} kHz. Using the INOISE and
ONOISE statements, the input and output noise behavior with
respect to frequency has also been simulated, as it is shown
in Fig. 6. The output noise and equivalent input noise at pole
frequency (f0 ∼= 29.9 kHz) were found as 86.13 nV/

√
Hz

and 93.38 pA/
√

Hz, respectively. The THD variation for both
responses with respect to amplitude of the applied sinusoidal
input current at pole frequency of 29.9 kHz (filter parameter:
IB1 = 101 µA) is shown in Fig. 7. An input with the amplitude
of 30 µA yields for both responses THD values of 1.59%.
From the simulations it is evident that the gain and phase
characteristics of the filter are in good agreement with theory
and the deviations are caused by the non-idealities of the active
element used.

V. CONCLUSION

In this paper, a novel ABB called voltage gain-controlled
MCFOA, which joins the voltage gain control feature of the
voltage and current gain CCII in the conventional MCFOA.
The usefulness of the tunable feature in the introduced VGC-
MCFOA is demonstrated in four-mode first-order all-pass filter
design. Since the capacitor in the circuit is grounded, the
proposed filter is attractive for integration. The pole frequency
can successfully be tuned in wide frequency range by means
of external bias currents. The SPICE simulations confirm the
theoretical assumptions.
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