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Abstract—The paper deals with the identification of linear time
invariant (LTI) systems by a special observer. An observer emit-
ting an frequency modulated continuous wave (FMCW) signal
and having a stretch processor as receiver will be considered
for system identification. A thorough derivation of the gathered
baseband signal for arbitrary LTI systems will be given. It is
shown, that the received signal is approximately given by the
transfer function of the LTI system over the frequency sweep
of the FMCW signal. The proof relies on an infinite large
time-bandwidth product of the transmit signal, such that errors
remain in practical applications with a finite time-bandwidth
product. Monte–Carlo simulations are conducted to verify the
approximation and to quantify its accuracy and remaining errors.
The findings are important for e.g. calibration or derivation of
a device model in FMCW radar applications.
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I. INTRODUCTION

System identification is the task of inferring a model of
a physical system from observed input-output data [1], [2],
[3]. This task occurs in many areas of engineering, as e.g.
in radar [4], [5] and channel sounding [6], [7], [8], and
also in control engineering or characterisation of hardware
components like filters, transmission lines, antennas etc. In
many applications, the physical system under identification
is modelled as linear and time invariant (LTI system). The
system identification is accomplished by an observer, which
excites the physical system with a known signal (input)
and gathers the response (output). Real-time sampling of
the response signal at baseband requires analog-to-digital
converters (ADCs) with sampling rates of at least twice the
signal bandwidth. In case of a large signal bandwidth (e.g.
several GHz) appropriate digitisers are costly. However, if
the system under identification is time-invariant or slowly
time-varying, real-time acquisition is not necessary. Periodic
sub-sampling can be employed in that case, such that the
digitiser requirements are relaxed to the cost of a longer
measurement duration [4], [9]. In this paper, an observer
which emits an frequency modulated continuous wave
(FMCW) signal and having a stretch processing receiver
architecture is considered as observer [10], [11]. Stretch
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Stephan Häfner is funded by the Deutsche Forschungsgemeinschaft under
Grant no. 317632307.

1

Identification of Linear Time Invariant Systems
Using FMCW Signals and Stretch Processing

Receivers
Stephan Häfner and Reiner Thomä

Abstract—The paper deals with the identification of linear time
invariant (LTI) systems by a special observer. An observer emit-
ting an frequency modulated continuous wave (FMCW) signal
and having a stretch processor as receiver will be considered
for system identification. A thorough derivation of the gathered
baseband signal for arbitrary LTI systems will be given. It is
shown, that the received signal is approximately given by the
transfer function of the LTI system over the frequency sweep
of the FMCW signal. The proof relies on an infinite large
time-bandwidth product of the transmit signal, such that errors
remain in practical applications with a finite time-bandwidth
product. Monte–Carlo simulations are conducted to verify the
approximation and to quantify its accuracy and remaining errors.
The findings are important for e.g. calibration or derivation of
a device model in FMCW radar applications.
Keywords—FMCW signal, LTI system, stretch processing re-

ceiver, system identification

I. Introduction

SYSTEM identification is the task of inferring a model
of a physical system from observed input-output

data [1]–[3]. This task occurs in many areas of engineering,
as e.g. in radar [4], [5] and channel sounding [6]–[8], and
also in control engineering or characterisation of hardware
components like filters, transmission lines, antennas etc. In
many applications, the physical system under identification
is modelled as linear and time invariant (LTI system). The
system identification is accomplished by an observer, which
excites the physical system with a known signal (input)
and gathers the response (output). Real-time sampling of
the response signal at baseband requires analog-to-digital
converters (ADCs) with sampling rates of at least twice
the signal bandwidth. In case of a large signal bandwidth
(e.g. several GHz) appropriate digitisers are costly. However,
if the system under identification is time-invariant or
slowly time-varying, real-time acquisition is not necessary.
Periodic sub-sampling can be employed in that case, such
that the digitiser requirements are relaxed to the cost of
a longer measurement duration [4], [9]. In this paper, an
observer which emits an frequency modulated continuous
wave (FMCW) signal and having a stretch processing
receiver architecture is considered as observer [10], [11].
Stretch processing receivers are matched-filter realisations
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Fig. 1 Block diagram of the considered system identification setup, featuring
the observer with a stretch processing receiver structure (dashed box), and
the LTI system under identification 𝑔(𝑡). Symbol (•) denotes the complex
conjugate operator.

for FMCW signals with a large time-bandwidth product [12].
Advantage of such a receiver is, that it can be realised with
a moderate hardware effort and ADCs with a low sampling
rate can be employed. Figure 1 shows a block diagram of the
considered observer. For a delay and damping LTI system,
the baseband signal 𝑥(𝑡) is known from literature [12], [13].
However, to the best of the authors knowledge, a thorough
derivation of the baseband signal for an arbitrary LTI
system is not given in literature. Knowledge of the baseband
signal for arbitrary LTI systems is important to derive a
device model of the observer for high-resolution parameter
estimation [5] or to calibrate the observer itself [14]. In
this paper, the baseband signal will be analytically derived
under several assumptions, and the respective limitations
and occurring errors will be elaborated. The finding has
been recently used by the authors to develop a device model
for an FMCW radar, see [5], whereas no proof has been given.

Under narrowband assumption, an FMCW signal in the
complex passband domain can be represented as [12]𝑠(𝑡) = 𝑎 ⋅ exp {𝚥 (𝜋𝐵𝑇 𝑡2 + 2𝜋𝑓𝑐𝑡)} , |𝑡| ≤ 𝑇2 . (1)

Variables 𝑇, 𝐵 and 𝑓𝑐 denote the sweep time, swept bandwidth
and the centre frequency, respectively. The signal is transmit-
ted over a LTI system, which is described by its respective time𝑔(𝑡) and frequency 𝐺(𝑓) domain representation. In Section II
it will be shown, that the output of the LTI system for large

Fig. 1. Block diagram of the considered system identification setup, featuring
the observer with a stretch processing receiver structure (dashed box), and
the LTI system under identification g(t). Symbol (•) denotes the complex
conjugate operator.

processing receivers are matched-filter realisations for FMCW
signals with a large time-bandwidth product [12]. Advantage
of such a receiver is, that it can be realised with a moderate
hardware effort and ADCs with a low sampling rate can
be employed. Figure 1 shows a block diagram of the
considered observer. For a delay and damping LTI system,
the baseband signal x(t) is known from literature [12], [13].
However, to the best of the authors knowledge, a thorough
derivation of the baseband signal for an arbitrary LTI
system is not given in literature. Knowledge of the baseband
signal for arbitrary LTI systems is important to derive a
device model of the observer for high-resolution parameter
estimation [5] or to calibrate the observer itself [14]. In
this paper, the baseband signal will be analytically derived
under several assumptions, and the respective limitations
and occurring errors will be elaborated. The finding has
been recently used by the authors to develop a device model
for an FMCW radar, see [5], whereas no proof has been given.

Under narrowband assumption, an FMCW signal in the
complex passband domain can be represented as [12]

s(t) = a · exp

{


(
π
B

T
t2 + 2πfct

)}
, |t| ≤ T

2
. (1)

Variables T , B and fc denote the sweep time, swept bandwidth
and the centre frequency, respectively. The signal is transmit-
ted over a LTI system, which is described by its respective time
g(t) and frequency G(f) domain representation. In Section II
it will be shown, that the output of the LTI system for large
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time-bandwidth products (T ·B >> 1) is

s(t) ∗ g(t) ≈ s(t) ·G
(
B

T
t+ fc

)
. (2)

The output signal x(t) of the stretch processing receiver is
given by

x(t) = s(t) · [s(t) ∗ g(t)] , (3)

whereas (•) denotes the complex conjugate operator. Plugging
(2) in (3) yields an approximation of the baseband signal

x(t) ≈ s(t) · s(t) ·G
(
B

T
t+ fc

)
= a2 ·G

(
B

T
t+ fc

)
.

(4)

Thus, the baseband signal in time domain is proportional to
the transfer function of the LTI system over the frequency
sweep of the FMCW signal. Because the time-bandwidth
product cannot be infinite in practise, some errors remain
and the relation is only approximately true. In Section III the
accuracy of the approximation and the introduced errors will
be addressed by simulations.

A. Limitations

Application of a stretch processing receiver has some
limitations and constraints regarding the LTI system under
identification.

The transmit signal undergoes a delay while being trans-
mitted over the LTI system. A delayed receive signal causes a
loss in resolution due to the corresponding loss in bandwidth,
as shown in [15]. The resolution is not degraded, if the delay
is much less than the sweep time. Restate the transfer function
of the LTI system in terms of magnitude and phase

G(f) = |G(f)| · exp {ϕ(f)} . (5)

If the magnitude of the group delay of the LTI system fulfils∣∣∣∣− 1

2π

∂ϕ(f)

∂f

∣∣∣∣ << T , (6)

the resolution is not degraded due to the transmission delay.
Hence, a large sweep time or equivalently a large measurement
duration is required, which is a drawback of this kind of
observer systems.

In practical implementations of the stretch processing re-
ceiver, a low-pass filter is present at the output of the multiplier
of the stretch processor [5]. This low-pass filter has no
influence on approximation (4) and can be neglected in the
mathematical derivations, if the impulse response duration σLTI
of the LTI system is related to the cut-off frequency fcut-off of
the low-pass filter by

σLTI ≤
T

B
fcut-off . (7)

Considering the ADC sampling rate fs, which has to fulfil
fs ≥ 2fcut-off according to Nyquist’s sampling theorem, the
maximum measurable impulse response duration is

σLTI ≤
T

B

fs

2
. (8)

II. PROOF OF APPROXIMATION (2)

The output of a LTI system excited with the FMCW signal
in (1) is given by

s(t) ∗ g(t) =

∫ ∞
−∞

S(f) ·G(f) · exp {2πtf}df . (9)

The spectrum S(f) of an FMCW signal is [12]

S(f) =

√
a2T

2B
exp

{
−π T

B
(f − fc)2

}
[Z(q1) + Z(q2)]

(10)

with

q1 =

√
T

2B
[B + 2 (f − fc)] (11a)

q2 =

√
T

2B
[B − 2 (f − fc)] . (11b)

Function Z(q) denotes the complex Fresnel integral [16]

Z(q) =

∫ q

0

exp
{

π

2
x2
}

dx . (12)

For large time-bandwidth products, the values of q1 and q2
tend to infinity, and magnitude and phase of Z(q1)+Z(q2) in
the frequency range [fc−B/2, fc+B/2] can be approximated
as [12]

lim
T ·B→∞

|Z(q1) + Z(q2)| =
√

2 (13a)

lim
T ·B→∞

arg {Z(q1) + Z(q2)} =
π

4
. (13b)

Figure 2 shows magnitude and phase of the Fresnel integral
sum Z(q1) +Z(q2) for different sweep times and bandwidths
over the frequency range from −6 GHz to 6 GHz and a
centre frequency of 0 Hz. Ripples at the band edges (denoted
as Fresnel oscillations) are present, which rise due to the
waveform uncertainty principle (Gabor’s uncertainty princi-
ple) [12]. Hence, the Fresnel oscillations reduce, if the sweep
time increases. An increase of the bandwidth does not reduce
the Fresnel oscillations at the band edges, but the oscillations
in the band middle decrease. Because the approximations
are only valid on the interval [fc − B/2, fc + B/2] and
the spectrum magnitude rapidly decreases outside of this
interval, the magnitude can be approximated by a rectangular
function. Plugging the approximations into (10) yields the
signal spectrum for large time-bandwidth products

S(f) ≈
√
a2T

B
exp

{
−π T

B
(f − fc)2 + 

π

4

}
rect

(
f − fc
B

)
.

(14)

Plugging the approximative signal spectrum into (9) yields

s(t) ∗ g(t) ≈
√
a2T

B
· exp

{

π

4

}
·
∫ fc+B/2

fc−B/2
G(f) exp

{
−π T

B
(f − fc)2

}
exp {2πtf}df .

(15)

Thus, the convolution result is given by the integral of an
oscillating function with envelope G(f).
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Fig. 2 Magnitude and phase of the complex Fresnel integral sum 𝑍(𝑞1) + 𝑍(𝑞2) for various sweep times and bandwidths. For variable sweep time, the swept
bandwidth was 10 GHz; and for variable swept bandwidth the sweep time was 1 µs.

The principle of stationary phase [12] will be applied
to approximate the integral in equation (15). Assuming the
oscillating function as rapidly varying and the envelope as suf-
ficiently smooth, contributions of the integrand cancel approx-
imately out under the integral. Hence, dominant contributions
occur only in the regions of minimal oscillation (stationary
points), and at the end points of the integration interval. Under
the first order approximation, the contributions of the end
points become negligible in comparison to contribution of the
stationary points [17]. For sake of convenience, the phase term
of the integrand is rewritten as𝛹(𝑓) = 2𝜋𝑓 (𝑡 + 𝑇𝐵𝑓𝑐) − 𝜋 𝑇𝐵𝑓2 − 𝜋 𝑇𝐵𝑓2𝑐 . (16)

The second order Taylor series expansion of the phase term,
evaluated at point 𝑓0, gives𝛹(𝑓) ≈ 𝛹(𝑓0) + ̇𝛹(𝑓0)(𝑓 − 𝑓0) + 12 ̈𝛹(𝑓0)(𝑓 − 𝑓0)2 , (17)

with ̇𝛹 (𝑓) = 𝑑𝛹(𝑓)𝑑𝑓 = 2𝜋 (𝑡 + 𝑇𝐵𝑓𝑐) − 2𝜋 𝑇𝐵𝑓 (18a)̈𝛹 (𝑓) = 𝑑2𝛹(𝑓)𝑑𝑓2 = −2𝜋 𝑇𝐵 . (18b)

According to the stationary phase principle, the evaluation
point 𝑓0 is selected to be the point of vanishing first order
derivative ( ̇𝛹(𝑓) = 0), because the oscillations are minimal
their. The only stationary point is at 𝑓0 = 𝐵𝑇 𝑡 + 𝑓𝑐. Plugging
the Taylor series expansion into equation (15) and noting that
the integral is only significant in the 𝜖 vicinity of the stationary
point, yields𝑠(𝑡) ∗ 𝑔(𝑡) ≈√𝑎2𝑇𝐵 exp {𝚥𝜋4 } exp {𝚥𝛹(𝑓0)}⋅ ∫𝑓0+𝜖𝑓0−𝜖 𝐺(𝑓) exp {𝚥12 ̈𝛹(𝑓0)(𝑓 − 𝑓0)2} 𝑑𝑓.

(19)

Assuming the envelope as slowly varying and ̈𝛹 (𝑓0)(𝑓 −𝑓0)2
as sufficiently large, 𝐺(𝑓) contributes to the integral only in
the vicinity of the stationary point 𝑓0. Hence, 𝐺(𝑓) can be
approximated by 𝐺(𝑓0), which yields𝑠(𝑡) ∗ 𝑔(𝑡) ≈√𝑎2𝑇𝐵 exp {𝚥𝜋4 } exp {𝚥𝛹(𝑓0)} 𝐺 (𝐵𝑇 𝑡 + 𝑓𝑐)⋅ ∫𝑓0+𝜖𝑓0−𝜖 exp {𝚥12 ̈𝛹(𝑓0)(𝑓 − 𝑓0)2} 𝑑𝑓 . (20)

Fig. 2. Magnitude and phase of the complex Fresnel integral sum Z(q1) + Z(q2) for various sweep times and bandwidths. For variable sweep time, the
swept bandwidth was 10 GHz; and for variable swept bandwidth the sweep time was 1 µs.

The principle of stationary phase [12] will be applied to
approximate the integral in (15). Assuming the oscillating
function as rapidly varying and the envelope as sufficiently
smooth, contributions of the integrand cancel approximately
out under the integral. Hence, dominant contributions occur
only in the regions of minimal oscillation (stationary points),
and at the end points of the integration interval. Under the
first order approximation, the contributions of the end points
become negligible in comparison to contribution of the sta-
tionary points [17]. For sake of convenience, the phase term
of the integrand is rewritten as

Ψ(f) = 2πf

(
t+

T

B
fc

)
− π T

B
f2 − π T

B
f2c . (16)

The second order Taylor series expansion of the phase term,
evaluated at point f0, gives

Ψ(f) ≈ Ψ(f0) + Ψ̇(f0)(f − f0) +
1

2
Ψ̈(f0)(f − f0)2 , (17)

with

Ψ̇(f) =
dΨ(f)

df
= 2π

(
t+

T

B
fc

)
− 2π

T

B
f (18a)

Ψ̈(f) =
d2Ψ(f)

df2
= −2π

T

B
. (18b)

According to the stationary phase principle, the evaluation
point f0 is selected to be the point of vanishing first order
derivative

(
Ψ̇(f) = 0

)
, because the oscillations are minimal

their. The only stationary point is at f0 = B
T t+fc. Plugging the

Taylor series expansion into (15) and noting that the integral is
only significant in the ε vicinity of the stationary point, yields

s(t) ∗ g(t) ≈
√
a2T

B
exp

{

π

4

}
exp {Ψ(f0)}

·
∫ f0+ε

f0−ε
G(f) exp

{

1

2
Ψ̈(f0)(f − f0)2

}
df.

(19)

Assuming the envelope as slowly varying and Ψ̈(f0)(f −f0)2

as sufficiently large, G(f) contributes to the integral only in
the vicinity of the stationary point f0. Hence, G(f) can be
approximated by G(f0), which yields

s(t) ∗ g(t) ≈
√
a2T

B
exp

{

π

4

}
exp {Ψ(f0)}G

(
B

T
t+ fc

)
·
∫ f0+ε

f0−ε
exp

{

1

2
Ψ̈(f0)(f − f0)2

}
df . (20)

Since the main contributions to the integral are concentrated
around the stationary point, a small error will occur by
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integrating over the infinite domain. Considering furthermore
the substitution ξ2 = 1

2 Ψ̈(f0)(f − f0)2 and the complex
Fresnel integral over the infinite domain [16], the integral in
(20) can be approximated as∫ f0+ε

f0−ε
exp

{

1

2
Ψ̈(f0)(f − f0)2

}
df

≈
∫ ∞
−∞

exp

{

1

2
Ψ̈(f0)(f − f0)2

}
df

=

√
2π

Ψ̈(f0)
·
∫ ξ(f=∞)

ξ(f=−∞)

exp
{
ξ2
}

dξ

=

√
2π

Ψ̈(f0)
· exp

{

π

4

}
=

√
B

T
· exp

{
−π

4

}
. (21)

Plugging this result into (20) yields the approximative output
signal in time domain

s(t) ∗ g(t) ≈
√
a2T

B
exp

{

π

4

}
exp {Ψ(f0)}G

(
B

T
t+ fc

)
·
√
B

T
exp

{
−π

4

}
=a · exp {Ψ(f0)} ·G

(
B

T
t+ fc

)
=a · exp

{


(
π
B

T
t2 + 2πfct

)}
·G
(
B

T
t+ fc

)
=s(t) ·G

(
B

T
t+ fc

)
, (22)

which has been stated in (2).

III. VERIFICATION AND ERROR ANALYSIS

Basically, the approximations in Section II introduce errors.
Under first order approximation, these errors can be assumed
as additive. Hence, the output of the stretch processor in the
noiseless case can be represented as

x(t) = a2 ·G
(
B

T
t+ fc

)
+ ε(t) , (23)

with ε(t) accounting for the approximation errors. According
to the assumption of a large time-bandwidth product, the errors
should fulfil

lim
T ·B→∞

ε(t) = 0 . (24)

Monte–Carlo simulations with varying system settings as
e.g. varying sweep time or bandwidth will be carried out to
verify (24). Randomly generated LTI systems are considered
for the simulation. A LTI system can be represented in
frequency domain by its corresponding rational form [3]

G (s = 2πf) = k

∏Z
r=1 (s− zr)∏P
r=1 (s− pr)

, (25)

with the zeros zr ∈ C and poles pr ∈ C. For sake of
convenience, the gain factor k is set to k = 1. In each Monte–
Carlo run, the zeros and poles are uniformly and pairwise
complex conjugately generated in the range from 50 kHz to
100 kHz. The range is chosen in order to have a low group

delay for small numbers of poles and zeros. The amplitude
of the transmit signal is chosen as a = 1 and the number of
Monte–Carlo runs is set to M = 1000. As figure of merit, the
normalised root mean-square error (RMSE) is calculated√√√√ 1

NM

M∑
m=1

N∑
n=1

∥∥∥∥xm (nt0)−Gm
(
n
B

T
t0 + fc

)∥∥∥∥2
2

, (26)

with Gm the generated LTI system and xm the calculated
baseband signal for the m-th Monte–Carlo run. The baseband
signal is calculated by considering the system structure given
in Fig. 1. The sampling time is t0 = 100 ns and the centre
frequency is fc = 0 Hz. Because the number of samples N
varies over the sweep time T according to relation T = Nt0,
the RMSE has been normalised.

First, simulations for various sweep times and bandwidths,
and a fixed number of poles and zeros Z = P = 4 are
considered. The RMSE curves are shown in Fig. 3, indicating
a decreased error if the time or bandwidth increases. Hence,
the error decreases with an enlarging time-bandwidth product,
which indicates the correctness of (24).

Second, simulations for various sweep times and orders
(max. number of poles and zeros) of the LTI system are
considered, whereas the swept bandwidth was 1 MHz. An
increasing system order causes a higher group delay, which
decreases the resolution and hence increases the approximation
error. Furthermore, a higher order causes a transfer function
which is less smooth compared to the oscillations of the
FMCW signal. Hence, the stationary phase approximation
becomes less accurate and the approximation error increases.
The RMSE curves in Fig. 4 verify the stated relation between
group delay and approximation error.

Last, simulations with varying fractional bandwidth B/fc
are conducted, whereas the centre frequency has been varied
and the bandwidth was fixed to 100 kHz. The RMSE curves
are depicted in Fig. 5, indicating an decreased error for small
fractional bandwidths (small bandwidth and high centre fre-
quency). Because the spectral oscillations of the FMCW signal
are higher for large centre frequencies and the stimulated
part of the envelope of the LTI system becomes smoother
for small bandwidths, the approximations by the stationary
phase principle become more accurate for small fractional
bandwidths.

Summarised, the simulations verify approximation (4) and
limitation (6). Furthermore it was found, that the accuracy of
the baseband signal approximation improves, if the fractional
signal bandwidth reduces.

IV. CONCLUSION

Identification of linear time invariant systems by an observer
which emits an FMCW signal and has a stretch processing
receiver architecture has been considered. It has been the-
oretically proven under the assumption of an infinite time-
bandwidth product, that the received baseband signal is ap-
proximately proportional to the frequency response of the
LTI system. The accuracy of this approximation has been
addressed in Monte–Carlo simulations with varying sweep
time and bandwidth of the FMCW signal, and varying order
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Fig. 4 Normalised RMSE over varying order of the LTI system, and different
sweep times. Swept bandwidth was 1 MHz.

of the LTI system. The simulations verify the approximation
and indicate, that the remaining approximation errors decrease
if 1) the time-bandwidth product enlarges, 2) the group delay
of the LTI system is much smaller than the sweep time or
3) the fractional bandwidth is small.
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