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Abstract— In Air Traffic Control a serious safety risk is 

represented by undetected simultaneous transmissions from 

different airplanes. In this paper, we approach this issue 

through a speech analysis algorithm, which combines 

traditional Mel Frequency Cepstral Coefficients extraction, a 

new two-stage normalization and widely used Dynamic Time 

Warping. In this way, we were able to extend the simultaneous 

speech detection capability in Voice Communication Systems of 

Air Traffic Control. The results prove that this implementation 

is suitable for practical applications. 

 
Keywords—Dynamic Time Warping; Mel Frequency 

Cepstral Coefficients; speech analysis; two-stage normalization. 

 

I. INTRODUCTION 

In the last decades technology evolved in an explosive 

way. This also happened with the communications and 

transportation capabilities. As a consequence, the air traffic 

was also constantly increasing and more and more planes 

operate now in the same time in the air and on the ground. 

Thus, in such high density operational airplanes areas, the 

chances that two, or even more planes, to initiate a 

communication with the air traffic controller is also 

increasing. When this happens and the controller is not 

aware of both transmissions we have a high safety risk. 

These situations are acknowledged by aeronautical 

authorities and threated as a potentially safety issue to be 

resolved. 

Therefore, solutions as in [1] were proposed to alert the 

air traffic controller when one ground radio station receives 

simultaneous radio signals from at least two airplanes (e.g. 

the scenario shown in Fig. 1). This approach uses radio 

spectrum analysis for a single receiving channel of several 

emitters. However, this solution, as presented by 

aeronautical standard [2], resolves only a part of the 

problem. The case when two simultaneous emissions from 

two airplanes are received separately, by two different 

ground radio stations, cannot be threaded as in [1] using 

radio spectrum analysis for a single channel and from our  
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knowledge, no solution was communicated. This is because 

the traffic controller will hear only one received signal by a 

channel (usually selected by Received Signal Strength 

Indication – RSSI), the system discarding the unselected 

signals. Each received radio signal will contain mainly only 

the emission from the nearest airplane and at the control 

office will be no information that the received signals came 

from different source. Thus, we developed a new approach 

which uses together all receiving signals in a multichannel 

speech information analysis. In this way, the system will be 

aware if simultaneous different transmissions are received by 

different radio stations. 

A remark must be pointed to the specific aspects and 

scenarios of these voice communication systems for air 

traffic control which make this task more difficult. The 

length of analyzed signals is maximum 300ms, due to real 

time communications demanding. Beside this, we have to 

deal with inconstant delays on each reception. Another thing 

which hinders our task is the noise level variation, due to 

automatic gain control. This last factor can alter efficiency 

when stabilization of automatic gain control (AGC) takes 

more than 200ms. In Fig. 2 we have the representation of the 

same emitted signal, received by three radio station. The 
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green area represents the first part of the received signals, 

where there is noise and the speech is difficult to be heard. 

In a straightforward way, in our case we have to verify if 

two, or more received signals came from the same pilot, 

transmitting the same voice message, or came from different 

pilots with different meanings. After a pre-processing stage, 

with a specifically tuned voice activity detection derived 

from [3] and possible used of a time delay estimation block 

[4], our problem looks like a speaker recognition task. 

In this approach, usually in the first stage are extracted 

speech features, like widely used, Linear Predictive Coding 

(LPC) [5], Mel Frequency Cepstral Coefficients (MFCC) [6] 

or Perceptual Linear Predictive coefficients (PLP) [7]. Then, 

the evaluation makes use of Dynamic Time Warping (DTW) 

[8], or Hidden Markov Models (HMM) [9], depending on 

each system’s specifics. 

Next, the paper is organized as follows: Section II 

contains details of our previous and actual approach. In 

Section III we present experiments regarding tuning and 

configuration of our method, while evaluation and 

discussions are reserved for Section IV. Conclusion and 

further work stand in section V. 

II. SIMULTANEOUS SPEECH DETECTION 

A. Speech Feature Based Attempts 

Due the fact that our working signals have a limited duration 

of less than 300ms, are affected by delay and varying noise 

level, we first tried to extract some robust speech features, 

used also in forensics domain. We evaluate in different 

configuration and combinations the Mean Delta [10], 

Entropy-Energy [11], log windowed autocorrelation lag 

energy (logWALE), spectral autocorrelation peak to valley 

ratio (SAPVR), modified-SAPVR [12]. We also extracted 

pitch information, using well known algorithms, such as 

PRAAT [13], RAPT [14], SRH [15], and YIN [16]. 

Then, the DTW was applied for various combinations of 

the above extracted speech features. The obtained results 

were not accurate enough to be used in practice. An 

explication for this fact could be found in the high noise 

level presented on the first part of the received signals. 

However, it is worth mentioning that in some cases, when 

the AGC gets stabilized quick, we can achieve reliable 

results. 

B. 2-Stage normalization MFCC and DTW solution 

In order to improve previous results we also apply DTW for 

MFCC. This approach has been also used before in various 

tasks [17-20]. On our first implementation in this way, we 

obtain much better results, compared with those from 

previous attempts, but not enough accurate. 

For further enhancement, what we propose is a two stage 

normalization. Then, the first normalization is done by 

computing the z-score (or standard score) to MFCC from 

each separate 1 frame, as follows: 
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where MFCCn1
l,i  represents the i-th first normalized MFCC 

of frame l, while µ and σ stand for mean and standard 

deviation. This could be seen as a normalization along 

frequency. The variance and mean at this stage, are 

computed along the MFCC dimension. The second 

normalization takes place in the cost function of the DTW, 

computing the standardized Euclidean distance between the 

two MFCC-vectors from each frames of each signal, with the 

variance now computed along the time series. This could be 

seen as normalization along time, because it operates on 

values from different frames. 

III. EXPERIMENTS PREPARATION 

For experiments, we evaluate several scenarios using 

different data base, TIMIT speech corpus [21], Noisex-92 

noise corpus and a proprietary database with recorded 

signals from voice communication systems for air traffic 

control. Because in our systems the sampling frequency is 

set to 8kHz, we downsampled the reference signals from 

TIMIT and Noisex-92. For simulations, we used Python 

programming with its specific modules (e.g. Scipy, Numpy, 

Pandas). 

To get insight of how the noise and delay affects our 

system, we separated our experiments in two stages. First, 

we configured and evaluated our algorithm on the clean 

TIMIT database, inserting artificial delays. After choosing 

an optimum configuration, we proceeded to the noisy 

analysis. In this last experiment, we selected several types of 

noises from Noisex-92 and added to TIMIT signals to obtain 

different SNR levels from -5dB to 15dB. In this way we 

could perform a second calibration phase. Finally, we check 

our proposed algorithm with the real database from 

operational field, which is affected by heavily variant noise 

and delays. 

When analyzing the effects produces by delay, we are 

interested in delays from 0 to approximately 100ms. This 

range is used as a safety measure, because in voice 

communications systems for air traffic control, based on 

VoIP, maximum accepted delays by network’s QoS are 

 

Fig. 2. Received signals; the red zone, which was to be used for 

simultaneous call detection, contains the first uterance, which is 

affected by different noise levels on each channel 
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usually less than 40ms. We selected 2342 clean signals from 

TIMIT database and grouped in pairs of two, one with each 

other, adding artificially generated delay to the second signal 

from each pair. Using this combination, we obtain 

2342*2342 pairs, from which 2342 pairs should be detected 

as the same transmission (which are formed from the same 

signal), and the rest as different speech. 

For MFCC and DTW computation we set frame size to 

128 samples with a step of 64. Also, in order to obtain fast 

results as imposed by [2], we used a fixed signal length of 

300ms, which corresponds to 37 frames. The other 

parameters had optimally been chosen to increase accuracy, 

as show in Table I. Then, we extracted the discrimination 

dependency over the MFCC number. 

We decreased the number of missed and false detection 

using two normalization stages (first in frequency and 

second in time). The results of simulations on clear pairs 

signals, with different normalizations at relevant delays are 

presented in Table II. For each delay and normalization 

configuration combined 2342 signals. This yields 

2342x2342 pairs, of which 2342 should be detected as same 

speech, and the others as different or simultaneous speech. 

Missed detections count undetected different speech pairs, 

which were labeled erroneously, as same speech. False 

detections count erroneously detected pairs of same speech 

as different speech. 

After a first calibration step, we were interested in how 

the system’s accuracy is influenced by the number of MFCC. 

Tring to minimize the number of missed and false 

estimations we obtain an optimum 33 MFCC, in range 8 to 

40, which was used in the next simulations. 

IV. EXPERIMENTS EVALUATION AND DISCUSSIONS 

A. Delay and noise influence on Timit database 

In the calibration phase, using only clean signals, for more 

than 20 MFCCs we obtained 100% accuracy for delays 

bellow 50ms. This can be observed in Fig. 3 for the false 

rate. Equivalent results were obtained also for missed rate. 

When adding several types of noise (white, pink, HF, 

engine or cockpit), without introducing any delay, the 

missed and false rate increased. However, these rates can be 

adjusted by a detection threshold. Rising detection threshold 

will decrease the false detection rate, but will increase much 

more the missed detection rate. In air traffic control, these 

rates should be small as possible. Because of this, a balance 

must be chosen, to have as less as possible false detections, 

while maintaining a reasonable detection rate for 

simultaneous different speech. This is because the impact of 

a false detection to the traffic controller is higher than in the 

case of a missed detection. 

Fig. 4 shows how the false rate is affected by the 

combination of delays and white noise at -5dB SNR. The 

threshold has been varied between 1.25 and 1.40 and the 

lowest false rate is achieved for a threshold of 1.40. 

For comparison, in Fig. 5 is presented the effect of delays 

and noise at 10dB. In both figures we can also notice that 

using a higher detection threshold reduces the false rate. 

The characteristics of missed rate increases also with 

delay, as shown in Fig. 6, for noisy signals. In this scenario, 

the threshold of 1.40 leads to the highest missed rate. 

TABLE I 

PARAMETER SELECTION 

Parameter Min Value Max Value Optimum 

Pre-emphasys coeff 0 1 0.97 

No_filter 26 40 max(30, no_MFCC) 

Window none Hamm, Hann none 

Celplifter 0 22 0 

Delta MFCC 0 20 0 

Delta-Delta MFCC 0 20 0 

Append_energy False True True 

First normalization  by frequency by time by frequency 

Second normalization by frequency by time by time 

 
TABLE II 

MISSED AND FALSE DETECTIONS 

Delay [ms] 72 80 96 

Missed 

detections 

No Normalization 23 2794 374 176 

Freq. normaliz. 54 4062 591 349 

Time normaliz. 0 0 37 

Both normaliz. 0 0 1 

False 

detections 

No Normalization 7 60 524 

Freq. normaliz. 8 49 557 

Time normaliz 0 0 19 

Both normaliz 0 0 0 

 

 

Fig. 4. Dependency of false rate by numbers of MFCC, clean signals 

 

Fig. 5. False rate [%] with white noise, SNR -5dB, 33 MFCCs 

 

Fig. 6. False rate [%]  whit white noise, SNR 10dB, 33 MFCCs 
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However, the missed rate could be drastically reduced in 

practical scenarios for relative low delays by tuning the 

threshold decision on lower values. For noisy signals and 

delays bellow 50ms, a good tradeoff between missed and 

false rate can be find using a threshold between 1.30 and 

1.35. 

Hence, in Table III and Table IV we show the results for 

different noise types at different SNR, with the threshold 

1.32, chosen in the middle part of the tradeoff interval. We 

used this value to avoid false detections at positive SNR. For 

SNR at 0 dB and below the signals are heavily affected by 

noise, resulting in an increasing number of false detections. 

Regarding missed rate, in this configuration, it appears to be 

stable for positive SNR values. However, for negative SNR 

we obtained reduced values for it. This could be explained 

by an increase of the DTW score with the increase level of 

noise. Thus, several DTW values of different pairs, which 

were below the threshold, now are detected correctly as 

different speech. Nevertheless, the decreasing speed of 

missed rate is significantly lower than increasing speed of 

false rate. 

In Table V and VI are summarized the results for different 

noise types at different SNR and a delay of 16ms, with the 

threshold 1.32, chosen in the middle part of the tradeoff 

interval. 

B. Analysis on Operational Signals 

In our previous simulations we used a combination of 

clean and noisy signals, the last ones with relatively stable 

and known SNR. These configurations let us tune algorithm 

for several aspects and gave insight about its robustness. 

Moving forward, after calibration stage, we proceed with 

new experiments using now operational signals. Compared 

with our artificially prepared noisy signals, the operational 

ones do not have a stable noise level. The noise level is 

usually higher at the beginning of the speech. After the AGC 

is stabilized, which typically takes 30 to 300ms, the SNR is 

high and we could say that we have proper signals to use on. 

However, because of safety measures and standard 

limitations, it is not allowed to wait more than 300ms. Thus, 

processing must start on heavily noise affected signals, 

sometimes being also distorted. Because of this, the results 

for operational signals are worse than from previous 

experiments. 

For our current analysis we used 360 signals, from 3 radio 

channels, which were grouped in 120 pairs. With tuned 

configuration from earlier experiments we evaluated our 

algorithm on all operational signals. As we expected, missed 

and false rate have opposite characteristics and a trade-off 

must be chosen. In Fig. 7 presented their trends. It must be 

noticed that the dynamic range of false rate expands almost 

 

Fig. 7. Missed rate [%]  whit white noise, SNR 5dB, 33 MFCCs 

TABLE III 

MISSED RATE [%] FOR DIFFERENT NOISES AND SNR 

Noise type 

SNR [dB] 
white HF  F16 pink 

-5 0.54 0.49 0.12 0.45 

0 0.55 0.49 0.12 0.44 

5 0.87 0.83 0.45 0.51 

10 0.87 0.83 0.46 0.52 

15 0.87 0.83 0.46 0.52 

 

TABLE IV 

FALSE RATE [%] FOR DIFFERENT NOISES AND SNR 

Noise type 

SNR [dB] 
white HF F16 pink 

-5 2.22 1.49 4.9 2.55 

0 1.62 1.07 5.2 2.49 

5 0 0 0 0 

10 0 0 0 0 

15 0 0 0 0 

 

TABLE V 

MISSED RATE [%] FOR DIFFERENT NOISES AND SNR, 16MS DELAY 

Noise type 

SNR [dB] 
white HF F16 pink 

-5 2.34 2.10 1.87 2.02 

0 2.39 2.10 1.87 2.01 

5 3.01 2.78 1.93 2.01 

10 3.09 2.78 1.95 2.46 

15 3.09 2.78 1.95 2.45 

 

TABLE VI 

FALSE RATE [%] FOR DIFFERENT NOISES AND SNR, 16MS DELAY. 

Noise type 

SNR [dB] 
white HF F16 pink 

-5 4.43 1.40 6.10 4.56 

0 2.53 1.20 7.23 4.59 

5 0 0 0 0 

10 0 0 0 0 

15 0 0 0 0 

 

 

Fig. 3. Missed and false rate dependency by decision threshold, for 

operational signals 
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on its entire domain, while the missed rate remains below 

10%, when using a decision threshold between 1.3 and 1.5. 

Another remark is that around this interval, an amount of 

false rate decrease implies 10 times increase to missed rate. 

In order to mitigate both errors in the same time, we 

added several pass-band filters. In the Tables VII, VIII, IX 

are shown the results obtained in the scenarios where a band 

pass filter (BPF) has been used and compared with the result 

summarized in Table X without BPF. 

In the tests involving the band pass filter, we varied both 

the lower and upper frequencies with a resolution of 50 Hz 

between 300Hz and 3300Hz. In the noisy scenarios it was 

remarked that the use of the band pass filter leads to lower 

missed and false rate, but when the SNR presents high 

values (e.g. 10dB, 15dB), the band pass filter leads to worse 

results. 

On the signals from the TIMIT database this measure 

decreased the missed rate detection for heavily affected 

noise signals, but increased both rates for less noise affected 

signals. Also, different low pass filters have been used where 

the low pass frequency has been varied between 300Hz and 

TABLE VII. 

FALSE RATE [%] AND MISSED RATE [%] WHEN A BPF IS USED (LOW 

PASS FREQUENCY: 300HZ, HIGH PASS FREQUENCY: 1500HZ) 

Delay [ms] Missed Rate [%] False Rate [%] 

0 1.31 6.06 

8 2.77 5.22 

16 4.90 4.71 

24 7.72 4.55 

32 11.70 4.38 

40 16.19 4.21 

48 21.33 3.87 

56 27.80 3.87 

 

TABLE VIII. 

FALSE RATE [%] AND MISSED RATE [%] WHEN A BPF IS USED (LOW 

PASS FREQUENCY: 300HZ, HIGH PASS FREQUENCY: 2000HZ) 

Delay [ms] Missed Rate [%] False Rate [%] 

0 1.031 5.556 

8 2.226 5.387 

16 3.736 4.882 

24 6.061 5.051 

32 8.967 5.051 

40 12.229 4.714 

48 16.636 4.882 

56 21.89 4.54 

 

TABLE IX. 

FALSE RATE [%] AND MISSED RATE [%] WHEN A BPF IS USED (LOW 

PASS FREQUENCY: 300HZ, HIGH PASS FREQUENCY: 2000HZ) 

Delay [ms] Missed Rate [%] False Rate [%] 

0 0.72 5.89 

8 1.44 5.56 

16 2.56 5.39 

24 4.12 5.39 

32 6.20 5.22 

40 8.65 4.71 

48 12.12 4.71 

56 16.00 5.05 

 

TABLE X. 

FALSE RATE [%] AND MISSED RATE [%] WITHOUT BPF 

Delay [ms] Missed Rate [%] False Rate [%] 

0 0.52 5.39 

8 1.08 5.05 

16 1.91 4.71 

24 3.14 4.71 

32 4.64 4.71 

40 6.52 4.38 

48 8.88 4.21 

56 11.81 4.21 

64 15.20 4.71 

 

TABLE XI. 

FALSE RATE [%] AND MISSED RATE [%], MFCC – ZCR 

Delay [ms] Missed Rate [%] False Rate [%] 

0 24.11 4.20 

8 27.52 3.70 

16 31.37 3.36 

24 34.90 3.03 

32 38.63 3.36 

40 42.68 3.19 

48 46.75 3.03 

56 51.07 2.86 

64 54.81 2.37 

 

TABLE XII. 

FALSE RATE [%] AND MISSED RATE [%], MFCC – ZRMSE 

Delay [ms] Missed Rate [%] False Rate [%] 

0 24.11 9.09 

8 26.32 9.60 

16 27.38 9.09 

24 28.54 9.26 

32 29.62 9.76 

40 30.43 9.60 

48 31.15 10.27 

56 31.99 9.93 

64 31.59 10.77 
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1200Hz, but the results were the similar as in scenarios with 

band pass filter. 

Another approach consists in the mix between MFCCs 

and zero crossing rate (ZCR) or combination between the 

zero crossing rate (ZCR) and the short-term energy (called 

as ZRMSE) as the last coefficient. It was expected that these 

features would lead to high errors at low SNRs, but tables X 

and XI show that this fact is true for high SNRs. 

The errors introduced in the case when ZCR or ZRMSE 

have been used have increased considerably. 

V. CONCLUSION AND FURTHER WORK 

In this paper, we proposed an algorithm to detect 

simultaneous speech from voice communications systems for 

air or naval traffic control, which is based on traditional Mel 

Frequency Cepstral Coefficient and Dynamic Time 

Warping. We introduced a 2-stage normalization procedure, 

which reduced missed and false detection rates. We also 

analyzed the use of other several speech features, simulated 

with TIMIT, Noisex-92 and a proprietary data base. 

On future experiments we will mixt the MFCC with 

various speech features aiming for better results. We will 

also try different new combinations adding speech features 

presented in Section II.A. A new research direction for this 

task is represented by deep learning, which recently was 

used in [22] for overlapped speech detection. 
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