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Abstract—As the communication between brain and computer
becomes more accessible the extraction of important features
of electrophysiological signals is an essential step in artificial
communication systems. This paper proposes the usage of the
Empirical Mode Decomposition to identify characteristics of the
P300 signal and classify target and non-target signals using a
feedforward neural network. The results show that through the
usage of EMD method it is possible to identify the P300 signal
using low volume of data.
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I. INTRODUCTION

A brain-computer interface (BCI) is a system capable of
translating brain signals onto commands and action. It is usu-
ally used by individuals with motor disability as it enables the
person to perform a specific task without involving muscular
movement [1], [2]. In this system, the so called Event Related
Potentials (ERPs) are used as driven signals. A very common
event related potential used in the analysis of BCI systems
is the P300 evoked potential. P300 potentials are based on
the oddball paradigm, which is defined as a random series of
event stimuli that contain an infrequently set of items. The
P300 is a low frequency signal occurring around 300 ms after
the stimulus onset. This ERP is elicited when a rare (target)
event appears in a sequence of regular events [3].

An important step of the ERP detection problem is the
feature extraction due to poor signal to noise ratio of a single
epoch. The most used method to detect a P300 is the averaging
of several epochs that contain the ERP but this can be time
consuming which reflects in processing delay in a BCI. There-
fore, single trial ERP detection is being widely studied [4].
When studying characteristics of an specific signal a way to
understand its basis is through decomposition. There is a vast
number of ways to decompose a signal. These methods can
have different mathematical or empirical approaches, different
complexity and areas of application.

Single trial EEG analysis has been developed for time-
locked and phase-locked evoked potentials. Methods include
blind source separation [5], Kalman filter [6], wavelet methods
[7] among others. However, signal extraction in these methods
requires prespecified basis functions.
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The Empirical Mode Decomposition (EMD) method has
particular properties and advantages over these methods. Its
basis functions used for decomposition are derived from the
data itself and not from basis functions defined a priori such
as in the Fourier or Wavelet transform. The Hilbert-Huang
transform (HHT) which uses the EMD derives the frequency
by differentiation, therefore, the uncertainty principle on time
and frequency resolution does not apply [8].

The EMD is a method of analysis that represents a signal as
the sum of zero-mean amplitude-frequency modulated signals
where each element is known as Intrinsical Mode Function
(IMF). As the EMD decomposes the signal based on its own
data it can be used to decompose characteristics of EEG
signals with P300. Once a number of features have been
extracted for each epoch a neural network is used as a classifier
in the detection task.

A. Hilbert Huang transform

The Hilbert Huang transform (HHT) decomposes a signal
using the EMD and calculates its instantaneous frequency
spectrum using Hilbert spectrum. It was proposed by Huang
in [8] and consists of the decomposition of the signal into a
finite number of the so called intrinsic mode functions (IMF)
and the Hilbert spectral analysis.

The HHT has a wide range of application for nonlinear
and non-stationary time series analysis. It was originally
designed to study fluid mechanics [8], but in sequence found
applications in different fields such as fault diagnosis [9],
data series prediction [10], biomedical signal analysis such
as blood pressure [11], elliptic seizure detection and EEG
decomposition [12], [13], and analysis of olfactory ERPs [14].

B. Empirical Mode Decomposition

EMD allows a flexible sub-band signal decomposition while
preserving the nonlinear and nonstationary features of the
signals which is essential for brain activity analysis. It is
an adaptive method, that is, the decomposition it produces
is specific to the analyzed signal. It decomposes the signal
into a sum of components, each with varying amplitude and
phase, and should separate phenomena occurring on different
time scales. EMD decomposes the signal into a set of high
frequency modes called Intrinsic Mode Functions (IMFs) and
a low frequency component called the residual. The method
decomposes the original signal as expressed in Equation 1:

X(t) =

m∑
j=1

Cj(t) +Rm(t) (1)
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where X(t) is the original signal in time domain, Cj(t)
is jth IMF, and Rm(t) the residue. Therefore, we can select
the IMFs combination to reconstruct the signal of interest and
discard the remaining IMFs which contribute to noise.

An IMF has to fulfill two conditions: (i) in the whole data
set, the number of extrema and the number of zero crossings
must be either equal to or differ by one at most. (ii) the mean
value of the envelope defined by the local maxima and minima
is zero at any point. These conditions are necessary to define
instantaneous frequency.

The starting point of the EMD is to locally estimate a signal
as a sum of a local trend i.e. the low frequency content and a
local detail i.e. the high frequency content. When this is done
for all the oscillations composing a signal, the procedure is
then applied again to the residual, considered as a new time
series, extracting a new IMF and a new residual. The process
continues until IMF satisfies the two criteria specified above.
At the end of the decomposition process, the EMD method
provides a signal as the sum of a finite number of IMFs and
a final residual.

The algorithm can be summarized as follows:

(a) Identify maxima and minima of the signal X(t);

(b) Interpolate between identified points to generate the
superior wrap, emax(t) and the inferior wrap emin(t);

(c) Compute the mean of the wraps, m1 = emin(t)+emax(t)
2

(d) Subtract the mean from the original signal, c(t) = X(t)−
m(t)

At this point, IMF1 = c(t) and the residue r(t) = x(t)−c(t)
becomes the new input signal for step (a). This process is
iterated until the resulting signal c(t) complies with the criteria
of an intrinsic mode function.

C. Application of the HHT to EEG signals

EMD has been used in the removal of noise in EEG data
such as eye blinks and eye movements. It has been used
with independent component analysis (ICA) to decompose ICs
that correspond to artifacts [17]. It has also been applied in
conjunction with wavelet analysis to remove movement-related
artifacts from EEG data [18] and with principal component
analysis to remove cardiac artifact [19].

The approach has also been applied to identify neural
activity sources related to ERPs such as described in Li et
al [20] which used EMD to detect disease states following a
stroke. EMD has the potential to be used to identify task-
relevant activity from trial to trial in different individuals,
because of the adaptive data decomposition it provides. EMD
has been implemented to detect neural correlates of movement
in EEG recordings [21] and classification in motor imagery
tasks [22], [23], [24]. Although most of the potentials used
for BCI are movement related some authors report the usage
of EMD to steady-state visual evoked potentials (SSVEP)
[25]. Although these potentials have stationary frequency, the
physiological noise recorded with it is not [26].

EMD also seems to be suitable to study the P300 potential
as it is composed by a low frequency component embedded in
high frequency oscillations. However, there are very little work
showing the implementation of EMD with P300 potentials.
Solis-Escarlate et al. [27] used EMD and support vector ma-
chines (SVM) for single trial detection of the P300 potential.
The authors decomposed an average P300 response and used
least-squared of a single EEG epoch to the IMFs.

This paper proposes the usage of the Hilbert Huang trans-
form through the Empirical Mode Decomposition to identify
characteristics of the P300 signal and classify target and non-
target signals using a neural network.

II. METHODOLOGY

A. Dataset

The dataset II from the Third Edition of the BCI competition
was used in this project [28]. This dataset is based on the
P300 speller paradigm proposed by Farwell and Donchin [29].
In this paradigm, a 6x6 matrix with letters and numbers is
exhibited to the subject. Columns and rows are highlighted in
a frequency of 5,7Hz and the subject is asked to focus his
attention on specific target characters. The data set contains
EEG recordings of two subjects. Each run consists of 64
channels with sampling frequency of 240 Hz and 85 characters
with 15 runs per character. Electrodes FC1, FC2 and Cz were
selected as they are located close to Cz electrode which,
historically, has shown clear P300 signals.

B. EMD for feature extraction

The EMD algorithm was implemented using Matlab soft-
ware. The first attempt was to investigate the influence of
the number of trials in the averaged signal used in the
decomposition. Three configurations were used:
(a) IMFs of the average of 85 characters (15300 epochs)
(b) IMFs of the average of 40 characters (7200 epochs)
(c) IMFs of one character (180 epochs)

C. Classification

For P300 classification, a feedforward neural network
trained with a resilient backpropagation learning algorithm
was used. The structure of the neural network consists of an
input layer, two hidden layers with 10 and 5 neurons each
and an output layer. In the first and second hidden layers a
log-sigmoid activation function was used. The output layer had
one neuron and a linear activation function was applied. These
values were chosen based on trial and error until performance
was no longer improved, as shown in Table I.

The neural network was trained with 65% of the data set
available per subject and 35% of the data set were used to
test and verify the performance of the system. In the training
phase, the pattern data is randomly selected for each subject
and presented to the input layer and the desired output at the
output layer. In the testing phase, 35% of the whole dataset
was evaluated.

In the classification step different procedures were investi-
gated:
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TABLE I: Mean hit rate vs. number of neurons in each layer

Layer 1 Layer 2 Layer 3 mean hit rate (%) standard deviation
80 40 1 91.2 ± 5.5
40 20 1 93.5 ± 3.9
20 10 1 95.3 ± 1.6
10 5 1 95.3 ± 1.1

i Classification using intrinsic mode functions: IMF of each
of the three configurations described in B were used as
input to the neural network. P300 signals of Cz electrode
were used as target output during training.

ii Classification using original signal:
a average of one epoch of target signals using all 85

characters
b average of all 30 epochs of target signals using one

character
c energy of the target signal for each character
d spectrum of the target signal for each character

The neural network input is a vector of 240 elements except
for (ii.c) which is a single element.

III. RESULTS AND DISCUSSION

IMF waveforms were obtained for the two subjects. Fig 1
and Fig 2 show the IMFs of target and non-target signals of
subjects A and B at electrode Cz. Top to bottom IMFs are
plotted from highest to lowest frequency. From these figures
it is possible to see that IMF labeled IMF4 is a visual candidate
to represent P300 as it peaks from 300ms to 500ms. Moreover,
these plots show that IMFs of target and non-target signals are
very distinct.

Fig. 1: Subject A intrinsic mode functions of target and non-target
signals. Topmost plot depicts original signal while subsequent plots
show the decomposition.

A. Target and non-target classification using IMFs

Since EMD decomposition can capture differences between
target and non-target, the IMFs can be used in a classification
process. The following analysis consisted in investigating
the influence of the number of IMFs in the classification
performance. The leftmost column of Table II depicts the
number of characters used in the average of the original signal.
Each character has 30 epochs. Classification accuracy superior
than 90% was achieved using one of the first 4 IMFs which

Fig. 2: Subject B intrinsic mode functions of target and non-target
signals. Topmost plot depicts original signal while subsequent plots
show the decomposition.

probably has meaningful content as hit rate drops considerably
with IMFs 5 and 6. Table II shows the influence of IMF in
the classification hit rate. It is clear that with only one IMF
the neural network was able to classify target and non-target
signals. This result is particularly interesting if we consider
that even when using a small number of characters the IMF
is able to capture important characteristics of the signal that
will distinguish target from non-target. Futhermore, from Fig1
and Fig2 it is possible to infer that the lower IMFs are very
similar in target and non-target signals as they represent very
low frequency, such as the trend of the signal.

TABLE II: Mean hit rate (%) vs. number of characters and IMF
number

Character IMF 1 IMF 2 IMF 3 IMF 4 IMF 5 IMF 6
1 100 100 100 95 5 0
40 100 100 5 0 0 0
85 100 95 5 0 0 0

In order to compare the classification results obtained using
EMD, target and non-target original data was classified using
4 different approaches: average signal of 85 characters (1
epoch of each character), average signal of 30 epochs of one
character, energy of the signal and spectrum of the signal as
described in section C. Fig 3 shows the hit rate obtained with
each of these approaches for both subjects. Best accuracy was
achieved when using the energy of the signal as the input to
the neural network (96.5 % hit rate for subject A and 93.0% hit
rate for subject B). This figure also shows that using various
epochs from the same character leads to better results than
using the same epoch but from different characters even if the
latest implies in more trials being averaged (II and I in Fig 3).
This result is particularly interesting as one would expect
that the more characters are used on the grand average of
a P300 signal the better the classification accuracy. However,
it is possible that using epochs from the same character in an
average brings more consistency to the signal representation
than using random characters. The same logic applies to Table
II when using 85 characters in the IMF decomposition. IMF4
which visually matches with a P300 representation doesn’t add
information to the classification. Although an interesting result
it deserves better investigation.

Table III summarizes the methods used in this work with the
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Fig. 3: Classification using original data for subjects A and B. I)
average of target signals of all 85 characters using one epoch each.
II) average of target signals of all 30 epochs for one character. III)
energy of the target signal for each character. IV) spectrum of a target
signal for each character.

classification hit rate achieved as well as the number of trials
necessary to achieve this hit rate. The method implemented in
this work achieves superior performance without the need of
averaging an extensive number of trials.

TABLE III: Classification methods

Method condition hit rate (%) data volume
Experiment I 1st IMF 100 low (180 epochs)

Experiment II

II.a 73.8
II.b 88.2 high (15300 epochs)
II.c 96.5
II.d 72.9

IV. CONCLUSION

This work presents the usage of empirical mode decom-
position (EMD) in processing EEG signals containing P300
evoked potential. The result of achieving a high hit rate
(>95%) without averaging the whole signal is promising since
single trial classification can be used in online processing of
BCI applications. Further work should consider processing
the decomposed signals, the intrinsic mode functions such as
extracting its frequency content to identify relevant features
for the P300 signal.
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