
The Optimal Real-Time Video Encoding Scheme
for Multi-Camera Panoramic System Using NVENC

Petr Kriz, Jiri Prinosil, Martin Buchta

Abstract—Today, modern, powerful, and relatively available
computer technology allows the proposal of real-time camera
systems working with several video streams. There is also a
permanent tendency to increase image resolution, what can be
useful for example in some image processing methods used in
surveillance systems. Given this, an important part of a multi-
camera real-time system proposal is optimal and efficient video
compression. The modern encoding standards support 4K or 8K
video content. One of these standards is H.264 or HEVC (High
Efficiency Video Coding) and the popular available encoding
technology using GPU (Graphics Processing Unit) acceleration
is NVENC (Nvidia Encoding) provided by Nvidia. Many papers
deal with the comparison of encoding standards in terms of
quality or bitrate savings on testing video sequences [1], [2].
However, this paper is aimed primarily at a comparison of
several practical implementations of NVENC technology using
different presets of H.264 and HEVC standards. The experiments
are mainly focused on testing the encoder’s real-time ability to
deal with single video input obtained from the industrial camera
using different settings. To do that, some system performance
parameters for the continuous monitoring during the NVENC
encoding process were chosen. Results in tables I and II are
compared, discussed and the best NVENC implementation with
encoding scheme is chosen in the context of our briefly introduced
novel panoramic system. Finally, the system is fully loaded by the
7 cameras, all streams are encoded using an optimal encoding
scheme and a performance limit is established for our hardware
configuration.

Index Terms—NVENC, real-time encoding, H.264, HEVC,
panoramic system, NVENC hardware performance analysis

I. INTRODUCTION

Fast and quality video compression plays a crucial role in
the implementation of real-time camera systems. In general,
the requirements for video encoders are to provide the highest
data rate in the shortest possible time while providing the best
possible data compression with the best image quality achieved
in the decoding process. Probably one of the most used
standards in these days are H.264 (also known as MPEG-4 Part
10: Advanced Video Coding) and more efficient HEVC (also
known as H.265 or MPEG-H part 2). Major improvements of
HEVC over the H.264 are described in [3]. Authors in [4]
shown that the HEVC is providing average bit rate saving up
to 41 % compared to H.264.

Of course, there are other modern and recently finalized
more effective standards such as versatile video coding VVC

P. Kriz, J. Prinosil and M. Buchta are with the Faculty of Electrical En-
gineering and Communication, Brno University of Technology, Brno, Czech
Republic (contacts: petr.kriz4@vutbr.cz, prinosil@feec.vutbr.cz). Manuscript
received June 30, 2021

(H.266/MPEG-I part 3), essential video coding EVC (MPEG-
5), or popular AV1 (AOMedia Video 1). Some papers are
exploring these video codec’s ability to process especially
4K/2160p content. Authors in [1] tested all these modern
standards in terms of Bjntegaard-delta bitrate (BD-BR) peak-
signal-to-noise ratio, bitrate savings, and encoding computa-
tional complexity. Considering the comparison of the two most
popular standards H.264 and HEVC, work [2] provides results
of testing to show that the HEVC design seems to be effective
for low bit rates, high-resolution video content, and low-delay
communication applications.

Concerning the implementation of fast encoding in real-time
multi-camera systems, we were looking for available solid
hardware-accelerated solutions. We can mention an encoding
approach of Comprimato company using its unique propri-
etary software JPEG2000 Codec SDK using CUDA (Compute
Unified Device Architecture) [5] to accelerate the encoding
process. It uses jpeg2000 compression based on wavelet
transform and theoretically, it should be able to deliver about
63 FPS of 4K video content (8 bit) using our GPU Quadro
P2000. In contrast, NVIDIA provides an open-source software
VideoCodec SDK using specialized hardware NVENC as part
of some NVIDIA GPUs. This technology now implements
the encoding standards H.264 and HEVC up to 8K video
resolution.

One of the current similar multi-camera systems using
NVENC encoding is the Bagadus architecture presented in [6]
uses NVENC encoding. The Bagadus system works with five
1080p cameras, after the frame acquisition during the real-
time stitching process the 4450 × 2000 px panoramic image
is created and NVENC H.264 is used to encode personalized
virtual view. The authors also show some experimental results
from encoding 690 frames of the 1080p sequence (run on
Intel Core i7-2600 and NVIDIA Quadro K2000 GPU) when
their configuration and settings (H.264 – Low latency preset)
achieves up to 133 FPS.

Another panoramic system [7] uses the X264 encoder mod-
ule which receives raw planar YUV422 panoramic images (up
to 4400× 1800 px) from the stitcher module. Video encoding
is performed using the libx264 library with ultrafast preset
implemented on CPU (Central Processing Unit).

We decided to use NVENC technology in our system.
The real performance of NVENC technology using specific
hardware settings is the main objective of this work, which is
structured as follows. Section II briefly describes the architec-
ture of our multi-camera system, used hardware, the proposed

doi: 10.11601/ijates.v10i1-3.304

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 10, No. 1-3 (2021)

7



application, and the scenario for NVENC testing. Further,
experimental results focused on computational efficiency are
summarized in section III. Finally, the results are discussed in
the conclusion section.

II. SYSTEM SETTINGS AND DESCRIPTION

As depicted in the Fig. 1 our panoramic system consists
of four units connected to the local network. The software
running on the units is marked as blue (the code is written in
C++ because of the fast algorithm implementation is required)
or orange (the code is written in .NET) rectangle. The first
unit we call the Encoding Server with the Multi-Camera Rig.
This unit serves as a storage and system for the distribution
of compressed video data which is acquired from industrial
cameras. The Encoding Server provides on-demand particular
source camera streams used by other units. The Video Analysis
Server automatically processes the video content to detect
potential events such as smoke or fire, and to track selected
objects (person tracking). The central database containing
settings of the panoramic system is running on the Control
Server. The Control Workstation is intended for usage by
the user. The main purpose of this unit is to take streams
and find transformation matrices, compose and present a final
virtual view called a virtual panoramic camera. The Control
Workstation is described in the detail in our precedent work
[8].

Viewer

Control Panel

Delivery Server

Encoder

Video Analysis Server

Control Server

Control 
Workstation

Encoding Server
Video Analysis 

Server

Control Server

Optional Cluster

FarmMultiple Instances

Multiple Instances

Encoder Agent

 Multi-Camera
Rig

Panoramic Calibration

Delivery Client

Delivery Client

 Local network 

Fig. 1. Multiple camera panoramic system deployment.

A. Hardware for NVENC testing

According to Fig. 2 we can describe all main elements in our
hardware chain together with the measured real baud rate. The
Multi-Camera Rig consists of several industrial mvBlueFOX3
cameras with 3856× 2764 px image resolution up to 7.3 FPS
(Frames Per Second). In the ”Highest speed“ camera preset the
transferred data achieves 77 MB/s per camera at maximal FPS.
Cameras are connected to USB 3.0 four-port hub and then the
data go to the Encoding Server using active optical cable for
long-distance (up to 100 meters) connection. Experimentally,
it was inspected that the maximal real throughput of 360 –

380 MB/s is possible to achieve with VIA USB 3.0 controller
via PCIe x8. All tests run on the computer with the following
configuration

• CPU AMD Ryzen Threadripper 1920X 12-Core
3.50 GHz,

• RAM 48 GB, SSD 250 GB,
• GPU Nvidia Quadro P2000,
• OS Windows 10 Home.

Multi-Camera Rig

USB 3.0 Hub

308 MB/s + control 

Encoding Server

77 MB/s

77 MB/s

77 MB/s

77 MB/s

USB 3.0 Active Optic Cable

VIA USB 3.0
controller
(PCIe x8)

Fig. 2. Hardware connection with real baud rate.

B. Application for NVENC testing

The final implementation of NVENC encoding in the
panoramic system is realized directly as a part of the Encoder
code (see Fig. 1), but to make our experimental process
easy to handle we proposed the control application with GUI
(Graphical User Interface, see Fig. 2) for NVENC testing
purpose only. The program is divided into several logical parts.
As depicted in the Fig. 3 the main control GUI application is
used to set key encoding parameters:

• Number of active cameras – choose the number of
streams to be encoded,

• Cuda/DirectX/FFmpeg executable path – full path to the
encoder (executable file) depends on NVENC implemen-
tation,

• API – selection of the concrete implementation of
NVENC (Cuda, DirectX, FFmpeg),

• Codec – standard H.264 or HEVC,
• Preset – choice of the four codec presets (High quality,

Low latency – High quality, High performance, Low
latency – High performance),

• QP – setting of the encoding quality parameter (1 – 50),
• Segment length – length of encoded video segment in

seconds,
• FPS – camera FPS in acquisition process,
• Write data to CSV file – saving all measured performance

data to a CSV file to effectively evaluate results.
After the encoding setting is completed and the start button

is pressed, the control application starts one of the three

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 10, No. 1-3 (2021)

8



processes (executable files) depends on selection. Cuda and
DirectX executables are based on VideoCodec SDK 11 (re-
leased on Oct 14, 2020), inspired by public samples provided
by Nvidia (AppEncCuda and AppEncD3D11 solutions). Ex-
cept for Cuda and DirectX, the samples also show how to
use NVENC with OpenGL. OpenGL interoperability is now
supported on Linux machines only so this was excluded from
testing since our system is based on Windows. In addition to
C++ standard libraries, we used Matrix Vision SDK, WINAPI,
and NVENC API to implement multiple-camera acquisition
and video encoding. Furthermore, because the interaction
between NVENC and FFmpeg is fully supported, the FFmpeg
was installed (released on May 5, 2021) and its executable
file was incorporated into the control application. Since the
encoding process is in progress, all the system performance
data related to the current encoding process are monitored
in a separate thread of the application. Performance data is
periodically acquired every 700 ms. When the encoding is
finished, results are saved into a CSV file.

Fig. 3. Application for NVENC testing.

C. Testing scenario

The goal of NVENC testing is to find the most suitable
encoding scheme with proper settings for our real-time im-
plementation based on NVENC. There are two steps in this
process. First, the optimal coding scheme is found based on
a comparison of performance results. Second, the optimal
coding scheme is set and the system is fully loaded by numbers
of 4K cameras to reveal system performance limit. Selected
system performance parameters for the monitoring are

• GPU memory [MB] – dedicated GPU memory used by
the encoding process,

• GPU utilization [%] – usage of 3D/Cuda engine during
the duration of the encoding process,

• CPU utilization [%] – usage of CPU during the duration
of the encoding process,

• RAM [MB] – RAM memory used by the encoding
process,

• Video Engine utilization [%] – usage of Video Encode
Engine used by NVENC technology during the duration
of the encoding process,

• Computational time [ms/frame] – the computational time
of the algorithm consists of loading frame data to device
memory and frame encoding (available for Cuda and
DirectX NVENC implementation only),

• Encoded segment size [MB] – final video segment size
to compare codec effectivity.

To ensure the most objective and repeatable testing, the
scenario is as follows. In the beginning, only one camera is
connected to the Encoding Server. The camera is placed in
front of the PC monitor. In this PC the video called ”Rain
in the forrest“ is played in a loop. It consists of a scene with
static hut, moving leaves and trees, and heavy rain. This video
content is captured by the camera, transferred, and encoded
in real-time. During the encoding process in the first step of
testing the position of the camera and lighting conditions are
stable.

Because there are many possible combinations of encoder
settings, in the first step of testing we set the following
parameters as constant. QP was experimentally established and
set to a value of 25. Length of each video segment is 30 s with
7 FPS. Instead of all four presets it was chosen only two of
them.

1) High quality preset – VBR (Variable Bit Rate), 1x
MultiPass, Tunning Info: High Quality, since version
10.0 the preset for HEVC and Pascal architecture is
named as P6 (P5 for H.264).

2) Low latency-high performance preset – CBR (Constant
Bit Rate), no MultiPass, Tunning Info: Low Latency,
since version 10.0 the preset for HEVC and Pascal
architecture is named as P4 (P2 for H.264).

Measurements are organized into two separate tables. In
addition, we enclose also some qualitative results based on
encoding standards and QP settings.

III. RESULTS

All the performance measurements are organized and sta-
tistically evaluated in Tab. I and Tab. II.

A. Searching the optimal coding scheme

In the evaluation process to search for the optimal coding
scheme for our system, we focus on some aspect of per-
formance results. First, comparing the corresponding HEVC
and H.264 formats, we can say that the HEVC standard is
better or not significantly worse than H.264 (except for some
categories such as Video Engine utilization or DirectX GPU
utilization where the usage in HEVC can be significantly
higher). But these observations may be also affected by a large

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 10, No. 1-3 (2021)

9



TABLE I
NVENC TESTING - H.264 CODEC RESULTS.

H.264 NVENC implementation

Cuda DirectX FFmpeg

Encoding preset Measurement Average Standard deviation Average Standard deviation Average Standard deviation

High quality

GPU memory [MB] 1057 0 945 0 1611 0

GPU utilization [%] 3.4 0.8 3.4 1.1 2.5 0.8

CPU utilization [%] 8.2 0.5 8.2 0.5 4.9 0.6

RAM [MB] 358.6 21.4 434.4 15.7 1781 13

Video Engine utilization [%] 12 17.7 17 21.8 17.5 22.1

Computational time [ms] 9 0.8 6.8 1.7 - -

Encoded segment size [MB] 49.7 0.5 56 0.7 187.4 6.6

Low latency - HP

GPU memory [MB] 884 0 754 0 1144 0

GPU utilization [%] 3 0.2 6.6 4.5 2.6 0.7

CPU utilization [%] 8.2 0.5 8.1 0.6 4.9 0.5

RAM [MB] 310.9 17 307.2 22.3 668.6 10.9

Video Engine utilization [%] 11.7 3.3 14.9 6 17.5 4.8

Computational time [ms] 8.9 0.4 6.6 1.4 - -

Encoded segment size [MB] 106.3 0.7 109.3 1.6 414.2 0.9

TABLE III
HEVC VS H.264 PSNR MEASUREMENTS DEPENDING ON THE QP.

QP PSNR (HEVC) [dB] PSNR (H.264) [dB]

1 39.05 37.12

22 35.17 33.72

50 32.82 32.80

standard deviation and due to the rapid increase and decrease
in performance. For the next decision-making, we compare
measurements in Tab. II only.

There are many ways how to find the best suitable coding
scheme for particular system configuration. Because the En-
coding Server is mainly limited by GPU Quadro P2000 (mem-
ory up to 5 GB) we focus on GPU memory utilization and
overall performance balance. Multiple coded stream segments
are transferred via network, so the smallest final segment size
is another important factor. In this case, the output segment
size for both presets in Cuda and DirectX is almost identical.
As can be seen in Tab. III, it was also confirmed that standard
HEVC achieves better results in compression quality compared
to H.264. We can comment on another interesting observation
in the results. Generally, the measured part of the DirectX
algorithm (computational time) is always faster than in Cuda
implementation (about 2 - 3 ms). DirectX also uses the lowest
amount of GPU memory, but with higher GPU utilization.
The Cuda implementation has the best overall performance
balance.

FFmpeg beats other implementations in CPU utilization
(about 3 % less usage) - this can be caused by better optimiza-
tion than our implementations, or by the usage of DirectShow

instead of Matrix Vision SDK to control the camera. On
the other hand, the size of an encoded segment is with the
same preset significantly higher. Because of the high GPU
memory usage, segment size, and the lack of possibilities
of customization, we do not use FFmpeg build for final
implementation.

After results analysis we consider to use as most suitable
coding scheme for our system

• NVENC implementation: DirectX; Standard: HEVC; Pre-
set: Low latency - high performance; Advantages: the
lowest amount of GPU memory usage, good encoded
segment size

B. Reaching the system performance limit

According to Fig. 2, two modules of the Multi-Camera Rig
were connected into the Encoding Server. So the maximal
number of connected cameras (hardware limitation) can be
8 in one Encoding Server unit. In the control application, we
set the encoding scheme chosen in the previous step with the
same parameters as in the last testing. To achieve a maximal
camera frame rate of 7 FPS we were able to connect 7 cameras
to the Encoder Server. With this configuration, our system can
encode about 49 frames (4K resolution) per second in a real-
time acquisition process and consumes the following hardware
capacity

• GPU memory [MB]: 1610± 1.8,
• GPU utilization [%]: 26.7± 19,
• CPU utilization [%]: 70.4 ± 22,
• RAM [MB]: 3467.8± 835.7,
• Video Engine utilization [%]: 28.2± 21.8.
As can be seen, after we ensure the low GPU memory usage

by choosing DirectX implementation, the usage of CPU has a

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 10, No. 1-3 (2021)

10



TABLE II
NVENC TESTING - HEVC CODEC RESULTS.

HEVC NVENC implementation

Cuda DirectX FFmpeg

Encoding preset Measurement Average Standard deviation Average Standard deviation Average Standard deviation

High quality

GPU memory [MB] 606 0 476 0 634 0

GPU utilization [%] 3.1 0.5 6.3 3.8 2.6 0.9

CPU utilization [%] 8.1 0.5 8.3 0.7 5 0.6

RAM [MB] 353.3 21.7 343.9 18.6 631.1 13.7

Video Engine utilization [%] 25.8 6.5 37 8 27.5 6.6

Computational time [ms] 8.8 0.2 6.7 0.2 - -

Encoded segment size [MB] 43 0.2 44.3 0.6 274.9 7.8

Low latency - HP

GPU memory [MB] 607 0.3 476 0 632 0

GPU utilization [%] 3.5 0.8 15.5 5 2.6 0.9

CPU utilization [%] 8 0.4 8.1 0.3 4.8 0.4

RAM [MB] 353.4 23.3 341 13.9 630 13

Video Engine utilization [%] 18.2 4.7 27.1 6.9 22.9 5.8

Computational time [ms] 9.4 1 6 0.4 - -

Encoded segment size [MB] 44.3 0.3 44.9 0.1 268.3 8.3

major impact on overall system performance. The enormous
CPU usage is mainly caused by high parallelism. Each camera
has two autonomous threads (one for data acquisition and one
for the encoding process). Threads are not synchronized to
each other to reduce the peaks in power performance. The
cameras were connected gradually, and it was found that the
CPU usage was increased with each camera by approximately
10 %. Furthermore, it was inspected that the simultaneous
usage of 8 cameras is limited by a setting of 5 FPS to achieve
a stable encoding process.

IV. CONCLUSION

In the previous sections, we introduced the proposed ar-
chitecture of a multiple-camera panoramic system in the
context of testing and using NVENC technology. The Control
application for testing and three different implementations
(Cuda, DirectX, and FFmpeg) were described. According
to the chosen scenario, the performance measurements were
acquired and visualized in Tab. I, II and III. The best average
values in each row of the tables were highlighted, all the results
were analyzed and arguments on how and why to choose
the most suitable coding scheme based on DirectX (HEVC
standard) were presented.

Finally, the system was fully loaded and tested with 7
industrial cameras. The current system configuration with
chosen coding scheme was able to simultaneously acquire
and encode 7× 7 frames per second. Related to performance
results, it is obvious that the system is limited mainly by the
CPU power (70.4± 22 for AMD Ryzen Threadripper 1920X
12-Core 3.50 GHz).

The main benefit of this paper is providing a deep analysis
of popular NVENC technology in real conditions. This anal-

ysis is focused mainly on hardware performance and using
real-time high-resolution frame acquisition and encoding in
the context of application in the multiple camera system.

Based on mentioned observations, future work will be
focused mainly on overall system optimization to achieve
better encoding results.

ACKNOWLEDGMENT

This work was supported by the Ministry of the Interior
under Grant VI20172020105.

REFERENCES

[1] D. Grois et al., “Performance Comparison of Emerging EVC and
VVC Video Coding Standards with HEVC and AV1, ” in SMPTE
Motion Imaging Journal, vol. 130, no. 4, pp. 1–12, May 2021, doi:
10.5594/JMI.2021.3065442.

[2] J. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan and T. Wiegand,
“Comparison of the Coding Efficiency of Video Coding Standards
Including High Efficiency Video Coding (HEVC),” in IEEE Transactions
on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1669–
1684, Dec. 2012, doi: 10.1109/TCSVT.2012.2221192.

[3] M. T. Pourazad, C. Doutre, M. Azimi and P. Nasiopoulos, “HEVC: The
New Gold Standard for Video Compression: How Does HEVC Compare
with H.264/AVC?,” in IEEE Consumer Electronics Magazine, vol. 1,
no. 3, pp. 36–46, July 2012, doi: 10.1109/MCE.2012.2192754.

[4] A. Banitalebi-Dehkordi, M. Azimi, M. T. Pourazad and P. Nasiopoulos,
“Compression of high dynamic range video using the HEVC and
H.264/AVC standards,” in 10th International Conference on Hetero-
geneous Networking for Quality, Reliability, Security and Robustness,
2014, pp. 8–12, doi: 10.1109/QSHINE.2014.6928652.

[5] https://comprimato.com/
[6] H. K. Stensland, V. R. Gaddam, M. Tenne, E. Helgedagsrud, M. Nss,

H. K. Alstad, A. Mortensen, R. Langseth, S. Ljdal, . Landsverk,
C. Griwodz, P. Halvorsen, M. Stenhaug, D. Johansen, “Bagadus: An
Integrated Real-time System for Soccer Analytics,” in ACM Transactions
on Multimedia Computing, Communications and Applications (TOMC-
CAP). January, 2014.

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 10, No. 1-3 (2021)

11



[7] R. Langseth, “Implementation of a Distributed Real-time Video
Panorama Pipeline for Creating High Quality Virtual Views.”Masters
Thesis, University of Oslo, Department of Informatics, 2014.

[8] P. Kriz, J. Prinosil, K. Riha and M. K. Dutta, “Proposed Methods for
Real-Time Visualization of Panoramic Stadium Tribune Images in High
Resolution, ” in 2019 11th International Congress on Ultra Modern
Telecommunications and Control Systems and Workshops (ICUMT),
2019, pp. 1–5, doi: 10.1109/ICUMT48472.2019.8970920.

International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems Vol. 10, No. 1-3 (2021)

12




