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Abstract—Recovering missing or distorted audio signal sam-
ples has been recently improved by solving an Audio Inpainting
problem. This paper aims to connect this problem with K-
SVD dictionary learning to improve reconstruction error for
missing signal insertion problem. Our aim is to adapt an initial
dictionary to the reliable signal to be more accurate in missing
samples estimation. This approach is based on sparse signals
reconstruction and optimization problem. In the paper two staple
algorithms, connection between them and emerging problems
are described. We tried to find optimal parameters for efficient
dictionary learning.
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I. INTRODUCTION

Since the time audio recording and transmittion have been
discovered, there is always a possibility of creation an error
in the signal. In times of analogue sound carriers they were
sensitive to scratching a gramophone record or tearing a
magnetic tape. Digital audio carriers are more resistent to
these damages mainly because of Error Correction Codes but
still transmitting audio signal through e.g. IP telephony can be
affected by packet loss.

Many problems connected with analogue audio recordings
restoration and their digitized copies have been solved in the
past by various techniques. For example distorted or missing
signal recover was repaired by interpolation techniques [1],
samples repetition, wavelet transform [2] or neural networks
[3]. IP telephony is a common example of packet loss problem
where data is lost during the transmition and they have to be
recovered, e.g. by [4].

The recent research in the field of sparse signals represen-
tations has brought new approach that can be utilized for this
audio restoration. Methods of solving a problem called Audio
Inpainting were first mentioned in [5] as an algorithm for
recovering missing samples in audio signal. This framework
provides segmentwise restoration of audio signals where the
position of missing samples is a-priori known. Sparse repre-
sentation modeling uses Orthogonal Matching Pursuit method
for solving an inverse problem. As an initial dictionary for
sparse signals modeling, Gabor or DCT dictionaries are used.

More sparsity and the resulting better approximation of a
missing signal can be achieved by choosing suited transform
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function to construct the dictionary or adapting initial dictio-
nary to the given signal. We decided to go the second way and
tried to adapt an initial dictionary with the K-SVD algorithm
[6]. This method is a generalization of K-means clustering
process and helps the dictionary to better fit observed audio
data.

In section II sparse signals modeling together with Audio
Inpaing as one of sparse signals modeling application are
described. The dictionary learning via K-SVD algorithm is
described in section III. Section IV shows our experimental
results. Software components are described in section V and
optimal parameters for dictionary learning which we found out
are summed up in conclusion (section VI).

II. AUDIO INPAINTING BY SPARSITY CONSTRAINTS

Sparse signal representations for inpainting problems were
first used in image signal processing [7] and a few years later
the Audio Inpainting algorithm was introduced in [5].

For some given signal y ∈ RN it is known, which samples
of it are reliable and which ones are distorted or missing.
Therefore, we can divide the support of the vector into the
two sets Ir and Im containing the coordinates of the reliable
and missing samples, respectively. As a consequence of the
partitioning we find Ir ∪Im = {1, . . . , N} and Ir ∩Im = ∅.
By deleting the rows with indices in Im from the N × N
identity matrix we obtain the matrix Mr ∈ R|Ir|×N selecting
the reliable samples from the signal

yr = Mry. (1)

Using methods based on sparsity we have to find an
appropriate function system to represent this class of signals by
a few prototype functions only. The design of such a collection
of atoms into which we can efficiently expand our signal, will
be the central concern of this contribution. Given a set of atoms
{dj}Mj=1 one can build the dictionary matrix D ∈ RN×M ,
where the columns of the matrix are the atoms. For a given
coefficient vector c we can then compute the corresponding
signal as a linear combination of the dictionary atoms by the
matrix multiplication

y = Dc. (2)

From now on, we will assume that D has a full rank and that
M ≥ N with the consequence that for a given signal y we can
always find a set of coefficients such that (2) is satisfied. Such
an expansion can always be computed by the pseudo-inverse
of D denoted by D+, i.e. c = D+y satisfy (2).

An expansion c is called sparse, if only few entries of the
vector are different from zero. We will denote the length of
the support of the coefficient vector by ‖c‖0. An expansion c,



which has only few entries significantly different from zero, is
called compressible. It is quite clear that for a given dictionary
only a certain class of signals will admit sparse expansions.
In the later sections we will be concerned with audio signals
and for this specific class a number of different dictionaries
has been proposed, among them Gabor and DCT systems [5].

As we need these dictionaries later for performance com-
parison, we will define them now. For 0 ≤ j < N , we define
the corresponding atom in the points 0 ≤ m < N
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The resulting transform is purely real and will admit a certain
level of sparsity for audio signals due to its harmonic structure.
Gabor dictionaries can be constructed as DCT atoms with
additional phase information. Due to the additional param-
eter, there is possibly a better fit to the signal, making the
coefficients sparser. For some 0 ≤ j < N , 0 ≤ n < N and
ϕ ∈ (0, 2π) we define
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Now we want to turn to the problem of audio inpainting, i.e.
we want to reconstruct the missing samples in an audio signal.
The problem we have to solve is: given the reliable samples
yr = Mry reconstruct the full signal y under the assumption
that y can be represented by a sparse set of coefficients.
Incorporating this information, we formulate the following
optimization problem

ĉ = arg min
c
‖yr −MrDc‖2 s.t. ‖c‖0 ≤ k0. (5)

Solving this NP-hard non-convex optimization problem is not
feasible, therefore we will use orthogonal matching pursuit
(OMP), a greedy algorithm, instead [8]. In the following we
will describe the steps in detail in Algorithm 1 as it is not only
used for the audio inpainting but also plays a major role in
the K-SVD algorithm presented in Section III. This algorithm
always yields a coefficient vector with ‖c‖ ≤ s for some user
determined sparsity parameter s.

Due to the length of the signals under investigation, one
usually processes the data segment-wise. Therefore, the steps
explained above have to be executed for every time slice
and then one re-synthesizes from these individually obtained
small portions. While for some pre-specified dictionaries (such
as Gabor and DCT) there exist fast transforms, it would
not be feasible to perform the steps described above for the
dictionaries that we will construct in Section III.

III. DICTIONARY LEARNING

A. Overview

Static prespecified dictionaries like the introduced DCT or
Gabor dictionaries are efficient because the transform process
can be realized in a fast way. They are usually tailored to
a specific group of signals. In the following we will discuss
how to flexibly construct a dictionary adapted to the signal
allowing for sparser representations.

Algorithm 1 Orthogonal matching pursuit
Input: y. . . signal segment,

D. . . dictionary,
s. . . level of sparsity,
ε. . . approximation error

Initialization: i = 0,
c = zero vector of length M
Ω0 = ∅. . . support set

Individual Steps:
1: Compute pseudo-inverse of dictionary D+

2: R = y
3: while ‖R‖22 > ε and i ≤ s do
4: i = i+ 1
5: Choose index j with maximal absolute value in D+R
6: Update support Ωi = Ωi−1 ∪ j
7: Add the j-th entry of D+

Ωi
y to the j-th entry of ck

8: R = y −DΩick
9: end while

Output: c. . . sparse coefficients approximating y

This process has got two main stages: first one is to
make a training set of signals from reliable segments of the
input audio data. These portions of samples are selected from
the input signal following user specifications. In the second
stage, an adapted dictionary is obtained from the learned
data. Designing a new adapted dictionary brings additional
computational burden because each dictionary atom has to be
compared with the training data.

B. Brief history of Dictionary Learning

The idea of dictionary learning was first introduced in 1996
by Olshausen. This method was called Maximum Likelihood
Method [9], other method called Method of Optimal Directions
(MOD) was introduced in 2000 by Engan et al. [10]. Another
approach that used Maximum A-Posteriori Probability was
introduced by Engan (1999) [11] and Murray (2001) [12]. Few
years later Lesage et al. presented Unions of orthonormal bases
[13].

C. The K-SVD algorithm

This algorithm was first presented by Aharon et al. [6]. It
is inspired by the K-means algorithm [14] solving the vector
quantization problem. Vector quantization is a process where
training examples are assigned to their nearest neighbors,
each example is represented with just one coefficient and
given the coefficients, dictionary D atoms are constructed.
There is an obvious relation between sparse representations
and quantization. Vector quantization is an extreme sparse
representation when only one atom is allowed in the signal
decomposition and this coefficient value must be 0 or 1.

As a predecessor and the closest algorithm of K-SVD is
MOD (Method of Optimal Directions) which updates the
whole dictionary in each learning iteration. The advantage
of K-SVD is that it updates just one vector (atom) in each
iteration and at the same time coefficients corresponding to this
atom are updated, therefore the convergence is accelerated.



The goal of this algorithm is to adapt a dictionary D to
represent the input signal yk more sparsely by using any
pursuit algorithm that approximates an optimization problem

ĉk = arg min
ck

‖yk −Dck‖22 s.t. ‖ck‖0 ≤ S0. (6)

In this case we use OMP algorithm, which is described in
Section II.

The K-SVD algorithm is described below (2), details can
be found in [8][6].

Algorithm 2 K-SVD

Initialization: D(0) ∈ Rn×K ,
J = 1,
Smax. . . max. sparsity of vectors ci

Repeat until convergence (stopping rule):
Sparse coding

1: Solve using any pursuit algorithm
min
ck

{‖yk −Dck‖22} s.t. ‖ck‖0 ≤ Smax

Dictionary update
For each atom k = 1, 2, . . . ,K in DJ−1 update by:

2: Set the group of indices using updated atom
ωk = {i|1 ≤ i ≤ N, ckT (i) 6= 0}

3: Compute the error matrix Ek by
Ek = Y −

∑
j 6=k djc

j
T

4: Restrict Ek choosing only columns corresponding to ωk

to obtain ER
k

5: Apply SVD decomposition ER
k = U∆VT

6: Update dictionary atom d̃k (first column of U)
7: Update coefficient vector ckR (first column of V multiplied

by ∆(1, 1))
8: Set J = J + 1

Every time the dictionary D is modified, it has to be checked
whether it is `2-normalized.

There is no guarantee that the K-SVD algorithm can reach
a global or even a local minimum. The purpose of this paper
is to find basic approximated parameters for the convergence
of audio signals dictionary learning using K-SVD algorithm.
However, there is no possibility to check the convergence
inside the algorithm, the only chance is to do it externally
by comparing the results with another experiment.

IV. EXPERIMENTAL RESULTS

A. Optimizing K-SVD parameters

Audio inpainting presented in [5] was performed only with
static dictionaries. That was the motivation for using the K-
SVD algorithm to adapt the dictionary on the observed signal
and therefore improve the reconstruction of missing signals.
Software utilized for our experiments is specified in Section
V. Audio Inpainting Toolbox also contains testing wave files
with speech (sampling frequency fs = 8 kHz, 16 kHz) and
music (fs = 16 kHz). We have done several tests to obtain
optimal parameters for dictionary learning and with these
parameters we tried to compete our approach with static
dictionaries. These tests were performed on one channel audio
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Fig. 1. RMSE according to number of iterations using different initial
dictionaries.

file music07 16kHz.wav with sampling frequency fs = 16 kHz
and length of 5 seconds.

After each iteration of dictionary learning via K-SVD
algorithm, Root Mean Square Error (RMSE) is computed by

RMSE =

√
‖Y −DoptC‖2F

N ×M
. (7)

After a few iterations RMSE settles at some value and remains
unchanged. You can see in fig. 1 that four iterations are enough
to reach satisfying RMSE value and after about 10 iterations
RMSE is stabilized at its minimum. Because the lowest RMSE

Other experiment was focused on minimizing RMSE ac-
cording to space between segments obtained from reliable
samples to get the training data. If you have a short audio
file and you do not have enough training segments of the
signal, it has to be decided between smaller segment shift for
more training data and larger segment shift for less training
data. However, decreasing the segment shift is nothing but
artificial enlarging the amount of training data and the samples
are repeated in training segments. We got results presented
in fig. 2. Using the audio file mentioned above of length
80 000 samples, we have the segment length of 256 samples,
redundancy factor 3, therefore dictionary D has got a size
of 256× 768. With these parameters we can set up a shift of
segments from interval (1; 100). You can see that by increasing
the segment shift value we get smaller RMSE during the
dictionary learning process.

One of parameters of the dictionary learning explored
further is the maximum number of nonzero coefficients Smax.
For Smax ∈ {1, 2, 3, 4, 5} dictionary learning experiments was
made with focus on lowest RMSE depending on different
Smax and therefore reaching the minimal error. In figure 3
it is obvious that after six iterations the minimal RMSE is
reached by Smax = 3 and remains minimal with very little
change.
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Fig. 2. RMSE according to shift of the original signal segmentation for
training data.
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Fig. 3. RMSE according to max. number of non-zero coefficients during the
dictionary learning.

Choosing the number of iterations has to be set up de-
liberately, since the number can be small and RMSE will
remain high (the dictionary is not adapted as much as it
can be) or the number can be too high and after reaching
the minimum RMSE the algorithm can waste the time with
new iterations or worse the RMSE can go up. That is why
another experiment observing RMSE was performed with best
parameters obtained above. Figure 4 shows that satisfying
RMSE can be obtained with three or four iterations. This test
was done for number of iterations from interval (1; 200). For
different signals number of iterations for settling, the RMSE
can be various and during our experiments we used number
of iterations of 50.

After settling the RMSE value on its minimum values were
oscilating, therefore for all of the plots above, Matlab Curve
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Fig. 4. RMSE according to number of iterations.

TABLE I
K-SVD PARAMETERS

Segment length N 256 samples
Initial dictionary D Random
Number of iterations 50
Max. number of non-zero coefs. Smax 3
Segment shift 100 samples

Fitting Toolbox was utilized to make a trendline (approxima-
tion by quadratic function).

B. Dictionary comparison on real signals inpainting

Now we will show the comparism of audio inpainting results
of different sound files and utilizing various dictionaries.
Both static (DCT and Gabor) and trained versions of these
dictionaries were used to compare reconstruction results. The
redundancy of all the dictionaries is 3. The parameters of the
K-SVD dictionary learning algorithm are summarized in table
I. The initial dictionary for K-SVD learning was filled with
random values because during our experiments we got the
most satisfying dictionary learning process. In each of audio
files a gap (sequence of samples with zero value) is made with
the size from 1 to 240 samples and evaluation of the signal
reconstruction process is computed as Signal-to-Noise Ratio
(SNR) only for missing samples by

SNR(y, ŷ) = 10 log
‖y(Im)‖22

‖y(Im)− ŷ(Im)‖22
. (8)

Our first experiments were made with male
(male04 16kHz.wav) and female voice (female04 16kHz.wav)
speaking English. The hole was generated starting at 6 000th

sample. In figure 5 you can see female voice reconstruction
results. The best SNR values were obtained using Gabor
dictionary and as you can see the trained dictionary (supposed
to better approximate the input signal) is in some cases worse
than static dictionaries.

Figure 6 shows the reconstruction results of male speech and
you can see that results of different dictionaries are almost
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Fig. 5. Female speech missing signal reconstruction.
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Fig. 6. Male speech missing signal reconstruction.

the same, but starting 160 samples hole length the trained
dictionary overcomes static dictionaries.

Other experiments were done for audio files containing
music samples. The gap was generated with 33 000th sam-
ple starting. First music file (music06 16kHz.wav) contains
woman voice singing and the reconstruction error is shown in
figure 7. Here, Gabor and trained dictionary are overcoming
the DCT dictionary and K-SVD trained dictionary looks like
to be more stable in larger gaps.

A sample of drums playing is recorded in (mu-
sic07 16kHz.wav) file. In figure 8 you can see that all the
dictionaries produce more or less the same reconstruction
results in the sense of SNR.

Last experiment was performed with guitar playing music
sample (music11 16kHz.wav). Figure 9 shows that for gap
length from 40 to 110 K-SVD trained dictionary strongly over-
comes static dictionaries of about 10 dB. Static dictionaries
reconstruction results are almost the same.
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Fig. 7. A woman singing missing signal reconstruction.
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Fig. 8. Drums playing missing signal reconstruction.

V. SOFTWARE

For Audio Inpainting process we used the Audio Inpaiting
Toolbox (http://small-project.eu/keyresults/audio-inpainting)
and the dictionary learning was done by SMALLbox v. 1.9
(http://small-project.eu/software-data/smallbox/).

These toolboxes are freely downloadable from the given
links. Source m-files for reproducing our experiments were
created on functions from Audio Inpainting Toolbox and can
be downloaded from [15].

Files are created and may be run by using MATLAB. It has
to be noted that results obtained by using random dictionary
could differ because every time you run randn() function in
MATLAB, you get a new matrix.

VI. CONCLUSION

In this paper, we presented a connection of two techniques
to improve the reconstruction of missing audio signal infor-

http://small-project.eu/keyresults/audio-inpainting
http://small-project.eu/software-data/smallbox/
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Fig. 9. A guitar playing missing signal reconstruction.

mation. Solving the Audio Inpainting problem was done by
Orthogonal Matching Pursuit algorithm and adapting of the
dictionary was processed by the K-SVD algorithm. Both of
them are described in the text. The adapted dictionary was
compared with static DCT and Gabor dictionaries.

Our aim was to find optimal parameters for dictionary
learning via K-SVD and compare these results with static
dictionaries. Construction of the building blocks of the dic-
tionary is signal dependent and there are no general rules for
setting up the parameters. In most cases the trained dictionary
overcomes static dictionaries but it has to be taken into account
the higher computational load. However, there are cases, where
the reconstruction error of trained dictionary was the worse
among these three dictionaries. Using real signals we have
done several tests which are presented in the paper.

Future work will be focused on construction of the dictio-
nary atoms and moving this problem to time-frequency plane.
Knowledge presented in the paper will be utilized for solving
real problem of old traditional music recordings which have
signal gaps surrounded in high noise level.
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