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Abstract—Non-stationary harmonic signals cannot be accu-
rately represented by Fourier transform (FT). Fortunately, sev-
eral methods for representing non-stationary harmonic signals
exist including Fan-Chirp trasnform (FChT) or Harmonic trans-
form (HT). This article is focused on the Harmonic transform and
its computation. Estimation of slope of fundamental frequency
change between analysed segments is essential for computation
of the HT. The slope is estimated using several realisations of
HT and comparing the spectral flatness. Optimisation of this
procedure is presented in the article.
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I. INTRODUCTION

The FT is generally able to represent frequency content of
a signal, when the signal is composed of components with
invariant frequency. Such signals can be called stationary har-
monic signals and by using FT we can get their frequency rep-
resentation with sufficient resolution in a specified frequency
band. The ability of the FT to represent frequency content of
a signal dimnishes if the signals contains components with
varying frequency [1], [2].

One solution of this problem is to use Warped Fourier
Transform (WFT) [3], where the signal is frequency warped
before applying the FT. This operation can be interpreted as
change of the signal’s scale for the conversion of time-varying
frequency components to frequency invariant components.
The scaling operation can be generalized using the Scale
Transform (ST) [4], [5], [6], where the scale is taken as a
physical property of the signal, or the scaling operation can be
integrated into the definition of transformation, as in Harmonic
Transform [7].

There are other transforms for representation of nonsta-
tionary harmonic signals, which are suitable for specific ap-
plications. The Fractional Fourier Transform (FrFT) [8], [9]
and Chirp Transform (CT) [10], [11] are suitable for lin-
early changing frequency components, whereas the Fan-Chirp
Transform [12], [13] is suitable for signals with frequency
components varying linearly on a fan geometry.

II. HARMONIC TRANSFORM

Harmonic transform has been introduced in [7] and its
main difference from Fourier transform is the integrated time-
warping function. It is defined as

Sφu(t)(ω) =

∫ +∞

−∞
s(t)φ′u(t)e

−jωφu(t)dt, (1)
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where φu(t) is unit phase, which is the phase of the fun-
damental harmonic component divided by its instantaneous
frequency [7], and φ′u(t) is first derivation of φu(t). Linear
change of fundamental frequency in a given segment is pre-
sumed, which is sufficiently satisfied by selecting an analysis
window of appropriate length.

Instantaneous phase ϕ(t) of a sinusoid with linear change
of frequency [14] is defined as

ϕ(t) = 2π

(
f0t+

εt2

2

)
, (2)

where f0 is fundamental fequency and ε = ∆f0/T is the
change of fundamental frequency divided by lenght of the
segment. Assuming discrete signal segment of the length N ,
where T = N/Fs, the discrete phase ϕ(n) of a sinusoid with
linear frequency variation [15] can be written as

ϕ(n) = 2π

(
f0n

Fs
+

∆f0n
2

2NFs

)
, (3)

where f0 is discrete instantaneous frequency, N is length of
the analysis window, and Fs is sampling frequency (initial
phase is disregarded for simplicity).

Initial fundamental frequency in a given segment can be
written as

f0 = fc −
afc
2
, a =

∆f0
fc

, (4)

where fc is the central fundamental frequency within a seg-
ment and a is the slope of fundamental frequency change
within the segment. Substituting (4) to (3) we get [15]

ϕ(n) =
2π

N
α(n), αa(n) = n

(
1− a

2
+
an

2N

)
. (5)

Frequencies of spectral lines of the Fourier transform are
given as

fc =
Fs

N
, (6)

and from the equation (5) it is obvious that the instantaneous
phase is

ϕ(n) =
Fs

N
α(n). (7)

Discrete harmonic transform (DHT) of signals with linear
fundamental frequency variation [15] is defined as

s(n) =
1

N

N−1∑
k=0

s(n)α′(n)ej
2πk
N α(n), (8)

where
α′a(n) = 1− a

2
+
an

N
, (9)
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Fig. 1. Fourier transform spectrum (bottom); Harmonic transform spectrum
with parameter a = 0.2 (top).
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Fig. 2. Influence of parameter a on the phase function φa(t).

is first-order derivation of (5).
The difference between DFT and DHT at analysis of

non-stationary harmonic signals can be seen on a part of
speech uttering from the PTDB-TUG database with frequency
modulation. On Fig. 1 (bottom) we can see that the higher
frequencies are smoothed due to frequency modulation. On
Fig. 1 (top) even high frequency peaks are clearly visible.

III. ESTIMATING PARAMETER a

As can be seen from equation (4), a determines the change
of fundamental frequency in the analysed signal, with the
assumption of linear fundamental frequency change. Variation
of a results in time-warping of the analysed signal, as can be
seen on Fig. 2.

The parameter a is usually estimated by grid search. It
consists of performing several realisations of HT with different
a [7]. Afterwards, the realisation which minimises spectral
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Fig. 3. Comparison of spectral flatness measure and modified spectral
measure fo the analysed segment.

flatness measure (SFM)

arg min
a

SFM(a) =

√∏N−1
k=0 |DHT(a, k)|

1
N

∑N−1
k=0 |DHT(a, k)|

, (10)

where DHT is discrete harmonic transform and |.| denotes ab-
solute value, is selected as the correct value. This approach is
computationaly extensive and is usually simplified restricting
values a can have and by following the change of fundamental
frequency in time [15].

When using (10) the SFM has several minimums and if a
search algorithm was used, it could fall into local minimum.
It is also noteworthy that it is possible the harmonic transform
|DHT(a, k)| will be equal to zero for some values of k, which
could mean that the spectral flatness will be zero for all a.
Removing zero values solves this problem and leads to band-
limited spectral flatness measure.

The harmonic spectrum is not complex conjugated even
for real signals (which is true for Fourier transform). From
the frequency axis point of view, the unit phase function
φu(t) shifts the spectrum towards lower frequencies if a is
positive, and to higher frequencies if its negative. Using the
formula (8) we get only one-sided spectrum, the right part will
not represent harmonic components of the analysed signal.
When estimating a, (10) has two minimums (see Fig. 3).
For harmonic signal analysis, only left side of the spectrum
is useful, because it appropriately represents non-stationary
harmonic signal. Using the modified spectral flatness measure
(MSFM)

arg min
a

MSFM(a) =

√∏N/2
k=0 |DHT(a, k)|

1
N/2+1

∑N/2
k=0|DHT(a, k)|

, (11)

we can get function of a which has clearly defined minimum.
This is caused by using only left side of the spectrum and
it consequently leads to reducing the number of operations
needed to compute spectral flatness by N

2 − 1.



IV. CONCLUSION

Harmonic transform with some of its features and param-
eters has been described. Furthermore, the parameter a and
its influence on non-stationary signal analysis was analysed.
By reducing the number of operations in computation of
spectral flatness measure, the number of operations needed
for computation of Harmonic transform is reduced.

Future work aims at further improving the performance of
harmonic transform computation using parallelisation and us-
ing machine learning for estimation of parameter a. Sensitivity
to noise will also be measured.
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