

Abstract—The Mobile Adhoc Networks represent very

perspective way of communication. The mobility management is

on the most often discussed research issues within these

networks. There have been designed many methods and

algorithms to control and predict the movement of mobile nodes,

but each method has different functional principle and is

suitable for different environment and network circumstances.

Therefore, it is advantageous to use a simulation tool in order to

model and evaluate a mobile network together with the mobility

management method. The aim of this paper is to present the

implementation process of movement control methods into

simulation environment OPNET Modeler based on the TRJ file.

The described trajectory control procedure utilized the

information about the route stored in the GPX file which is used

to store the GPS coordinates. The developed conversion tool,

implementation of proposed method into OPNET Modeler and

also final evaluation are presented in this paper.

Keywords— GPS, GPX, MANET, mobility, OPNET Modeler,

simulation, software.

I. INTRODUCTION

D-HOC networks recently represent one of the most

attractive research fields in telecommunication

technology. The wireless ad-hoc network is a

decentralized network that does not rely on any pre-existing

communication infrastructure. Each wireless node is capable

of movement and can participate in the routing process by

forwarding data to other neighbouring nodes [1], [2].

Mobile Ad-hoc Network (MANET) is one of the

technologies that belong to the wireless ad-hoc networks.

MANET represents a system of wireless mobile nodes which

can freely and dynamically self-organize into a dynamic

network with temporary topology allowing users and devices

internetwork seamlessly [3].

Because, the MANET is a communication system

consisting of mobile nodes, one of the important factors in the

simulation of these networks is the ability to control the

movement of mobile nodes during the simulation. For this

reason, the mobility control of individual nodes or entire

networks becomes a key factor for the testing and simulation

of communication systems [4]. While keeping the

functionality of mobile nodes and networks, wireless

communication allows changing their position based on the

Manuscript received November 1, 2012. Manuscript accepted December

4, 2012. This work has been supported by the project CZ.1.07/2.3.00/30.0005

of Brno University of Technology.

Pavel Vajsar1, Jiri Hosek2 and Milan Bartl3 are with Department of

Telecommunications, Brno University of Technology, Brno, Czech Republic

(e-mails: pavel.vajsar@phd.feec.vutbr.cz1, hosek@feec.vutbr.cz2,

bartl02@stud.feec.vutbr.cz3).

Karol Molnar is with the Honeywell International, s.r.o. (e-mail:

Karol.Molnar@honeywell.com).

predefined trajectories, orbits and randomly selected routes

[5].

The possibility to control the movement of mobile node

allows more effective prediction and scheduling of network

sources for individual stations, such as handover optimization

in MANETs.

II. TRAJECTORY CONTROL IN OPNET MODELER

In the environment of OPNET Modeler (OM), there are

several ways to control the trajectory of mobile node. Firstly,

the type of trajectory is chosen and then its assignment to the

selected node is defined. There are more trajectory types and

ways of assignment in the simulation environment OPNET

Modeler, see following chapters [6].

A. Segment-based trajectory

In order to exactly determine the trajectory of mobile node

in OM, user can use the segment-based trajectory. Thus

defined trajectory consists of one or more traversal-time

values and a set of three-dimensional (x, y, altitude)

coordinates that define the mobile node’s path. In addition,

trajectories with variable-length segments have a set of angles

(roll, pitch, yaw) that define the mobile node’s orientation in

space. Segment-based trajectories are stored in ASCII text

files with a *.trj extension. For proper functionality of so

defined trajectory, it is necessary to place the *.trj file into a

folder created by the project and then assign this file with

defined trajectory to a mobile node or network using the

“trajectory” attribute [6].

1) Fixed-interval trajectory

Segment-based trajectories come in two varieties: fixed-

interval and variable-interval. In a fixed-interval trajectory,

only one value determines the traversal time for all segments,

hence a node takes the same amount to time to traverse every

segment, regardless of the segment’s length. In addition, a

single value generally determines the altitude for all points.

The *.trj file has following structure:

<coordinate_count>
locale: <locale>
<sample_time_step> <position_unit> <coordinate_method>
<x_coord_0>, <y_coord_0>, <alt_0>
<x_coord_1>, <y_coord_1>, <alt_1>
...
<x_coord_n>, <y_coord_n>, <alt_n>

2) Variable-interval trajectory

In a variable-interval trajectory, each point has its own

specified altitude, wait time, traversal time (time from the

previous point to the current point), and orientation. The wait

Implementation of Mobility Management Methods

for MANET
Pavel Vajsar, Jiri Hosek, Milan Bartl and Karol Molnar

A

mailto:pavel.vajsar@phd.feec.vutbr.cz
mailto:hosek@feec.vutbr.cz
mailto:bartl02@stud.feec.vutbr.cz3
mailto:Karol.Molnar@honeywell.com

time causes a mobile object to pause at each point before it

begins traversing the next segment. The *.trj file for variable-

interval trajectory has following structure:

Version: 3
Position_Unit: <position_unit>
Altitude_Unit: <altitude_unit>
Coordinate_Method: <coordinate_method>
locale: <locale>
Calendar_Start: <start_time>
Coordinate_Count: <coordinate_count>
X Position ,Y Position ,Altitude ,Traverse Time, Wait
Time, Pitch, Yaw, Roll
<x_coord_0>,<y_coord_0>,<alt_0>,<trav_time_0>,<wait_time
_0>,<pitch_0>,<yaw_0>,<roll_0)>
<x_coord_1>,<y_coord_1>,<alt_1>,<trav_time_1>,<wait_time
_1>,<pitch_1>,<yaw_1>,<roll_1)>
...
<x_coord_n>,<y_coord_n>,<alt_n>,<trav_time_n>,<wait_time
_n>,<pitch_n>,<yaw_n>,<roll_n)>

3) Relative movement

Because the mobile nodes can be nested (e.g. a mobile node

within a mobile sub-network), the movement of the parent

subnetwork can affect the movement of the child node. It

must be considered when the segment-based trajectories are

created. The effect on movement is as follows [6]:

 If the child node’s position units are degrees, movement is

considered in an absolute sense relative to the earth.

Parent subnetwork movement has no effect on the child

node.

 If the child node’s position units are non-degree (such as

meters or feet), movement is relative to the parent

subnetwork. Thus, if the parent subnet is moving east at

10 meters per second (m/s) and the child node within it is

moving west at 5 m/s, the motion of the node with respect

to the earth is 5 m/s east.

4) Defining segment-based trajectories

The segment-based trajectory can be created and assigned

manually in OPNET Modeler. The procedure for defining a

trajectory varies slightly depending on whether the trajectory

uses fixed intervals or variable intervals.

B. Random trajectory

Trajectories and orbits specify deterministic paths for

mobile nodes. Random trajectory is defined by a rectangular

region in which a node will move during a simulation. This

region is specified by x-y coordinates or by using a mobility

domain. During simulation, the node randomly selects a

destination in the region and moves toward it at a specified or

randomly chosen speed. Upon reaching its destination, the

node pauses a configurable length of time before it repeats the

process by selecting another random destination [6].

C. Direct manipulation of position attributes

In addition to trajectories and orbits, OPNET Modeler users

can model movement of mobile sites by directly manipulating

position attributes. If a trajectory is specified for a mobile

node, the path of that site is predetermined for the entire

simulation. However, if no trajectory is specified, the node’s

position can be directly updated by any process during

simulation. A mobile node’s x position and y position

attributes specify its location in its parent subnetwork. A

mobile node’s altitude attribute specifies its elevation relative

to sea level, the underlying terrain, or the parent subnetwork

(depending on the site’s altitude modeling attribute setting). A

change to one of these attributes will cause an immediate

change in the location of the mobile site [6].

Typically, one of two techniques is employed to

dynamically change the location of a mobile node. In both

cases, a user-defined process is responsible for modifying the

position attributes of a mobile node. The first technique is a

centralized approach, in which one process is responsible for

updating the positions of all of the mobile nodes in a network

model. The second technique is a decentralized approach. In

the sense that each mobile node has a process executing

within it that updates only its own position [6].

III. GPX AS INPUT DATA

The real path is obtained using the GPS (Global Positioning

System) system and stored in the GPX (GPS eXchange

Format) file subsequently. This file type can be captured from

the navigation device or online maps servers. This GPX file

with defined path is passed to the OPNET Modeler

environment, where it is converted by special functions into a

format that meets the requirements of OM for movement

control.

A. GPX file format

The GPX file format is based on XML (eXtensible Markup

Language), which means that the file contains predefined tags

to represent the whole trajectory [7]. The structure of a GPX

file format is described in Table I.

TABLE I

STRUCTURE OF THE GPX FILE FORMAT

XML Element Description

<?xml version=”1.0”

standalone=”yes”?>

File header placed at the beginning

of the document.

<gpx> Tag identifying GPX files.

<trk> Tag representing a track.

<trkseg>

Tag containing the list of points

representing the track.

<trkseg lat=“49.5684025“

lon=“14.0124586“ >

Tag containing the GPS coordinates

of the point.

1) Haversine formula

One of the most important operations during the conversion

of a GPX file to an OPNET Modeler trajectory file is to

calculate the distances between two consecutive points of the

track. This calculation is realized according to the

mathematical equation called haversine formula [8]. This

formula is defined as:

 () () () (), (1)

where

 haversin() is the haversin function:

 () (

)

 ()

 (2)

 d is the distance between two points,

 R is the diameter of the Earth,

 1 is the latitude of the first point,

 2 is the latitude of the second point,

 ∆λ is the difference in longitude of two points.

IV. IMPLEMENTATION OF ONLINE CONVERSION TOOL

Detailed knowledge of both formats (GPX and TRJ) taking

part in conversion is compulsory, as well as painstaking

validation of perfection of the conversion process. At first, a

web interface was developed for conducting this process. This

interface was capable to operate with desired formats and

provided more comprehensible environment than OPNET

Modeler.

The first stage of the work was accordingly focused on

implementing an application for conversion of GPX files to

TRJ format which is supported by OM for the sake of

insertion and testing of a real trace within OM environment.

As for technological solution, the simplest approach has been

chosen. The entire system is designed as a web application.

The basic architecture of this application is shown in Fig. 1.

The user interface was programmed using plain HTML

(HyperText markup Language) without any additional

libraries or frameworks. For mere input validation was used

simple JavaScript. The very conversion and parsing is

conducted on the server side. UI provides options for

choosing a file to be converted and uploads this file to the

server where all the necessary operations are performed. A

technology of PHP (Hypertext Preprocessor) was used to

develop the server side of the application.

PHP scripting language was chosen for several reasons.

GPX files are based on XML (eXtensible Markup Language)

language and are practically identical. SimpleXML libraries

were used for the reason of being supported by majority of

contemporary webhosting providers. This means that no

required installation or additional libraries, which results in

simplification of development of the application. Another

reason may be an extension like Google Maps API or any

other map basis that may stand for data source in hypothetical

extension of the application, as well as viewing a trace stored

in a GPX file. At least but not last, in case of emplacement on

public web page, the application could be available to all

Internet users.

A. PHP Scripting Language

The PHP (Hypertext Preprocessor) is a widespread

multipurpose scripting language. Especially, it is used for

web application development, so it consequently supports an

encapsulation into HTML. When used with dynamic web

pages, scripts are being processed at server side and mere

results of this process are transmitted to the target browser.

B. JavaScript

The JavaScript is multiplatform object-oriented scripting

language. It is used, nowadays, mostly as programming

language for web pages. Its code is often inserted directly into

HTML code of a page. JavaScript usually controls interactive

elements like buttons or special text fields, or can be used for

creating animations and image effects.

Fig. 1. Conversion application architecture

Word Java in the title of this language is of mere marketing

character, though, and the language itself has nothing in

common with the Java language besides similar syntax.

Unlike the other programming languages (e.g. PHP or

ASP), JavaScript code is usually processed after the page is

loaded in a browser (i.e. at the client side). This fact results in

several security restrictions for protection of user’s privacy.

For example, JavaScript cannot process files stored on the

disk [11].

C. Conversion Interface

Individual inputs of the application are controlled by

JavaScript so that only a number can be inserted and a blank

value is invalid. In a case when user disables JavaScript in his

web browser, the inputs are subsequently checked by PHP as

well. The graphical user interface of the application is shown

in following Fig 2.

In the first stage, the application loads selected file and

validates its appendix (must be .gpx). Size of the file is

checked afterwards. Its maximal value is set for 10MB. The

file is subsequently stored at the server side in a directory

named gpx. Further, the file is loaded by function

simplexml_load_file. This function converts the file into an

object in memory. This step also includes validation of

structure of the file, whether it corresponds with XML/GPX

standards. With these requirements fulfilled, the object stored

in memory is searched for an element <trkpt>. This element

contains parameters of geographical latitude and longitude.

These parameters are then stored in one field. If the object

contains further information about time or altitude, these data

are stored in the field as well. After storing all points of the

track into the field, a count of these points is computed.

Furthermore, if background is set on Campus, values in the

field are converted from angular coordinates to coordinates of

selected background. With a check button Center checked, a

center of the trace is placed exactly into the middle of the

coordinate system.

A new file trajectory.trj is created subsequently in a

directory called export. A header is inserted into this file

according to chosen metrics of the trace and to the count of

trace points computed earlier. After this import, the field

containing coordinates, time and altitude is read and the

values are written into the file in a format specific to TRJ

files.

During the last stage the old file from the gpx directory is

deleted and the new TRJ file is available to download.

Fig. 2. Conversion application – graphical user interface

V. GPX TO TRJ CONVERSION IN OPNET MODELER

The C/C++ programming language can be used in OPNET

Modeler to implement new and modify existing functions. All

functions related to the work with GPX format have been

stored in the gpx.h header file. Using the #include “gpx.h“

command this header is inserted to the Header Block of the

process model created in OPNET Modeler [6].

The coordinates obtained from the GPX file are stored in a

structure containing 4 parameters, as it is shown in the

following fragment of source code. The first two parameters

(latitude and longitude) represent the location, the third

parameter defines the altitude and the fourth parameter stores

the timestamp.

struct coordinate {

double longitude ;
double latitude ;
double altitude ;
int time ;

};

The first step of converting a GPX file to a TRJ format is

loading the GPX file from the given directory. Next the file

must be opened for reading and processed by a XML parser,

e.g. by functions available in the TinyXML library. The data

obtained will be inserted into a vector. In our model this

process is realized by the CoordToVector function:
vector < coordinate > CoordToVector (char gpx_file
[128] , bool isTimeMan, double timeMan , double speed ,
bool * err)

This function is directly called from the process model. The

input parameters of the function are the following:

 gpx_file – the name of the GPX file which has to be

loaded.

 is_time_manual – a flag, which takes value 1 if the time

is configured manually via model attributes or 0 if the

time is obtained directly from the GPX file.

 travel_time_manual –manually defined time value,

entered via an attribute of the model.

 speed - manually defined speed of movement, entered via

an attribute of the model.

 *err – a pointer type flag, which takes value 1 if an error

occurs during the process, i.e. if the file with given name

is not present or if the format is not supported.

Consequently this flag terminates the simulation in the

process model, as it is described later.

By executing the CoordToVector function, it creates a

vector of coordinate structures, defined earlier.

Vector< coordinate > v;

This vector is the return value of the CoordToVector

function and contains the coordinates of each point together

with its altitude and timestamp. In the next step the vector is

converted into a TRJ format. This conversion is provided by

the GPXtoTRJ function.

void GPXtoTRJ (char site_name [128] , vector <
coordinate > v , bool * err)

The input parameters specify the vector of coordinate

values and the name of the target TRJ file. First, the header is

inserted into the file. Next the input vector is processed step

by step and the values calculated are entered into the TRJ file.

The timestamp of the first entry equals to 0. The timestamp of

the following entries equals to the difference between the

timestamp of the current and previous entry.

The TRJ file also contains information about the total

number of coordinates. This parameter is required during the

configuration of a mobile node in the OPNET Modeler

environment. The total number of coordinates is determined

by the CountFunc function:

int CountFunc (vector < coordinate > v),

which is called by the vector of coordinates as an input

argument. Additionally, the length of the whole trajectory is

calculated. This calculation is provided by the

DistanceInMeters function:

double DistanceInMeters (const coordinate & from ,
const coordinate & to)

This function returns a value of type double, which

contains the length of the whole track in meters. The distance

is calculated according to the haversine formula introduced in

section 3.

VI. SIMULATION PROCESS IN OPNET MODELER

Firstly, it is necessary to set up the simulation environment

after the implementation of functions for the conversion of

GPX file into TRJ file. The first step is the import of designed

functions into environment. This process is important and

allows using new functions during the simulation process.

The next step is the design of simulation scenario, in which

nodes trajectory will be changed according to GXP file.

A. Set up OPNET Modeler simulation environment

All necessary functions for the conversion of GPX file into

TRJ file are implemented in header file called gpx.h. The

OPNET Modeler simulation environment can read standard

header files from this location:

\{INSTALL_DIR}\{OPNET_VERSION}\models\sd\include

Therefore, the gpx.h file can be stored into this location or

a folder, which contains the gpx.h file, can be linked into

simulation environment through the menu item Edit-

Preferences-Compilation Flags for All Code. This menu item

contains:

/ W3 / D _ C R T _ S E C U R E _ N O _ D E P R E C A T E
/ IC :\ {INSTALL_DIR} \ {OPNET_VERSION} \ models \ std \
include

To add another record, it is necessary to modify the menu

item. The value PATH_TO_FOLDER will be replaced by

real path to folder, which contains gpx.h file. This

modification defines another search path for header files.

/ W3 / D _ C R T _ S E C U R E _ N O _ D E P R E C A T E
/ IC :\ {INSTALL_DIR} \ {OPNET_VERSION} \ models \ std \
include / IC : \ {PATH_TO_FOLDER}

B. Initial configuration of simulation scenarios

Firstly, a new project has to be created in OPNET Modeler.

The creation of the mobile node’s model is the necessary step.

This node’s model can by obtained by duplicating the default

model. The duplicated model of mobile node was modified

and extended for ability to manage its own trajectory, which

depends on the GPX file. The duplication of mobile node’s

model is necessary, because the modification of the existing

mobile node’s model would be reflected in all applications of

this model, i.e. in other independent simulations.
The duplicated mobile node’s model is extended by new

processor, which is called Mobility. This processor is based

on standard processor called Sink, which contains two states -

Init (forced) and Discard (unforced), see Fig. 3.

C. Extended attributes of mobile node

In the OPNET Modeler environment, it is possible to extend

existing objects attributes by new custom attributes. The aim

is to manage nodes movement by the route defined in GPX

file, therefore it is necessary to extend the node’s attributes by

few new attributes:

 GXP File - specifies the name and path of GPX file which

defines the route.

 Manual Time - the time can be entered manually (enable)

or can be used from GPX file (disable). If this attribute is

disabled and GPX file does not contain information about

time, then the time 1s is used for a transition from one

point to another.

 Travel Time - total time (in minutes) required for

completion of the journey.

Fig. 3. Mobility processor and child process model

 Speed - speed of movement in km/h.

 Generate TRJ - if this attribute is enabled, TRJ file is

created during simulation, which can be displayed in

OPNET Modeler environment or it can be reused for

another simulation process. If value is set up to disable,

TRJ file is not created.

 Movement Report - determines whether the reports about

mobile node’s movement will be displayed in the OPNET

simulation console.

These attributes can be set during the mobile node

configuration in user interface part of OPNET Modeler or can

be set by program during the simulation process. New

attributes can be seen in Fig. 4.

Fig. 4. New defined attributes for mobile node

D. Extending process model

The process model described above was based on a standard

process model called Sink. The Sink process model is not

suitable for a trajectory management, therefore the Sink

process was extended by an unforced state called

Coordinates. It can be seen in Fig. 5.

1) INIT state

The INIT state is an initial state in every process model in

OPNET Modeler environment. This state contains operations

to get node identifier (ID), nodes attributes and to set

coordinates vector.

my_obj_id = op_id_self();

parent_obj_id = op_topo_parent(my_obj_id);

op_ima_obj_attr_get (my_obj_id , "gpx file", site_gpx);

…

mymap[parent_obj_id]=CoordToVector(site_gpx, time_manual
, travel_time , speed , &err);

distance = PathDistance (mymap [parent_obj_id]);

count = CountFunc(mymap[parent_obj_id]);

GPXtoTRJ (site_name, mymap[parent_obj_id], &err);

At first, an ID of the Mobility process is loaded using

op_id_self() function. After that is loaded an ID of the parent

process. Subsequently, appropriate attributes of the mobile

node are loaded using function op_ima_attr_get(). In the

example above there is only a sample showing loading of the

gpx attribute. Other attributes are loaded similarly. Function

CoordToVector() is called afterwards. It fills the mymap

vector with coordinates. Following functions determine

length of the loaded route and count of coordinates of the

entire route.

If the attributes of the node are set to create TRJ file,

fiction GPXtoTRJ() is called. Its output is a TRJ file, which is

located in the project folder. After performing all tasks

program transits into the Coordinates state.

2) COORDINATES state

This state browses the vector of coordinates that was

created in the INIT state. These coordinates are assigned to

the mobile node. Assignment of individual coordinates is

performed by the function called op_ima_obj_attr_set_db1():

op_ima_obj_attr_set_dbl (parent_obj_id , "x position ",
mymap[parent_obj_id][i].longitude);

In the case where the time value is loaded from the GPX file,

calling the function TimeDiffFunc() is necessary:

timeD [parent_obj_id] += TimeDiffFunc (i, mymap [
parent_obj_id]);

The function mentioned above returns a difference of times

between two points. The acquired time value is incremented

into the timeD variable at each pass through the Coordinates

state. In the case where the time value is set manually through

station’s attributes, the timeD value is acquired differently.

timeD[parent_obj_id] += mymap[parent_obj_id][i-1].time;
op_intrpt_schedule_self(timeD[parent_obj_id], 0);

The function op_intrpt_schedule_self() is a standard

function of the OPNET Modeler environment. It performs an

interruption of the state at the very time that is saved in the

timeD variable. This results in mobile node’s transition to the

desired location at the requisite time. This procedure repeats

until there are no coordinates available.

3) DISCARD state

This state performs actions associated with terminating

functions of the process model and thus terminating the

superior Mobility processor element. From the simulation

point of view, the DISCARD state provides termination of

station’s movement.

Fig. 5. Process model direct_movement_mobility

VII. ANALYSIS OF THE SIMULATION RESULTS OBTAINED

The simulation was performed for two mobile nodes. Each

mobile node obtained slightly different settings. The adapted

model, supplemented with the new Coordinates state and

process parameters, was used as the mobile node’s model.

Settings of parameters of individual mobile nodes correspond

to the following Table II.

TABLE II

PARAMETERS OF INDIVIDUAL MOBILE NODES

Attribute mobile_node0 mobile_node1

GPX file traceA.gpx traceB.gpx

Generate TRJ enabled disabled

Manual Time enabled disabled

Speed 20 0

Travel Time 0 0

The OPNET Modeler environment contains an advanced

debugger that allows observation of chosen simulation

parameters, simulation progress control and display an

animation of individual object’s movement. The movement

animation is an essential simulation parameter. It allows

monitoring of the mobile node if it follows the trace that was

defined in the GPX file assigned (see Fig. 6).

Fig. 6. The sample of mobile node’s movement around the map background

based on a trajectory defined in a GPX file

VIII. CONCLUSION

In the beginning, the paper states options of station model’s

control in the OPNET Modeler environment. Particularly, a

TRJ file and its structure is essential. The file provides

trajectory control and the possibility of moving the station

using direct manipulation of the attributes. The next part of

the paper deals with implementation of functions for a real

trajectory simulation. All these functions are implemented in

an individual file and create an interface between the GPX

file defining a real trajectory and the OPNET Modeler

environment. This system enables to control movement of a

station around a real trajectory. This was impossible in the

OM until now. It is possible to use more fractional GPX files

for a trajectory definition. The functions defined in the OM

are loading fractional files and connecting individual

trajectories into one continuous trajectory. The station moves

around the resultant trajectory, then. This solution brings new

opportunities for network simulations to get closer to the real

environment.

REFERENCES

[1] ILLYAS, M. The Handbook of Ad Hoc Wireless Networks, CRC

Press, 2003.

[2] BOUKERCHE, Z. Algorithms and Protocols for Wireless and Mobile

Ad Hoc Networks, Wiley, 2009.

[3] SKOŘEPA, M.; ŠIMEK, M.; MAHDAL, O. Mobile Ad-Hoc Network

routing protocols - performance analysis. In Proceedings of the 32nd

International Conference Telecommunications and Signal Processing.

2009. s. 1-4. ISBN: 978-963-06-7716- 5.

[4] CAMP, T.; BOLENG, J.; DAVIES, V. A survey of mobility models

for ad hoc network research. In Wireless Communications and Mobile

Computing, 2002, vol. 2, no. 5, pp. 483-502.

[5] HOŠEK, J.; MOLNÁR, K.; JAKÚBEK, P. Map-Based Direct Position

Control System For Wireless Ad- Hoc Networks. In Proceedings of

the 34th International Conference on Telecommunication and Signal

Processing, TSP 2011. Budapest: Asszisztencia Szervezo Kft., 2011. s.

195-200. ISBN: 978-1-4577-1409- 2.

[6] OPNET Technologies. OPNET Modeler Product Documentation

Release 16.1 .2011.

[7] FOSTER, D. GPX: the GPS Exchange Format, [online]. 2004. URL:

http://www.topografix.com/gpx_for_developers.asp.

[8] GIS FAQ Q5.1: Great circle distance between 2 points, [online]. 2010.

URL: http://www.movable-type.co.uk/scripts/gis-faq-.1.htm.

[9] PHP: Preface - Manual [online]. 2010. URL:

http://cz.php.net/manual/en/preface.php.

[10] Hrebenar, Ji . SimpleXML - jednoduše na XML v PHP 1.d l [online].

2009. URL: http://programovani.blog.zive.cz/2009/12/simplexml-

jednoduse-na-xml-v-php-1dil.

[11] About JavaScript - MDC Doc Center [online]. URL:

https://developer.mozilla.org/en/JavaScript/AboutJavaScript.

Pavel Vajsar completed the Master degree at Faculty

of Electrical Engineering in Communications and

Informatics specialization in Brno University of

Technology. He is currently 4th-year postgraduate

student at the Department of Telecommunications of

the same faculty. His research work has been

concentrated on routing in MANET networks with

regard on quality of services. Recently he has also

been concerned with wireless sensor networks and

developing of application for monitoring of these

networks.

Jiri Hosek received the B.S. and M.S. degrees in

Electrical Engineering from Faculty of Electrical

Engineering and Communication at the Brno

University of Technology in 2005 and 2007,

respectively. He is currently an assistant professor at

the Department of Telecommunications of the

Faculty of Electrical Engineering and

Communication at the same university. His research

work has been concentrated on the design of new

communication protocols and services for the

wireless networks.

Milan Bartl is currently a 3rd-year master student at

the Department of Telecommunications of the

Faculty of Electrical Engineering and

Communication, BUT. His master thesis is focused

on the issue of cooperation between external systems

and simulation environmet OPNET Modeler and its

utilization in QoS assurance area.

Karol Molnar received his MSc. degree in

Electronics and Communications (1997) and Ph.D.

degree in Teleinformatics (2002) at Brno University

of Technology (BUT), Czech Republic. He is with

the Honeywell International, s.r.o. In his scientific

work he focuses on modern network technologies,

especially on topics of QoS support in both fixed and

mobile network technologies. During the last several

years he actively participates in theoretical and

research works closely related to the technology of

Mobile Adhoc Networks.

http://cz.php.net/manual/en/preface.php
http://programovani.blog.zive.cz/2009/12/simplexml-jednoduse-na-xml-v-php-1dil
http://programovani.blog.zive.cz/2009/12/simplexml-jednoduse-na-xml-v-php-1dil
https://developer.mozilla.org/en/JavaScript/AboutJavaScript

