Non Minimum Phase Channel Estimation by Blind and Adaptive algorithms

Zidane Mohammed, Said Safi, Mohamed Sabri, Ahmed Boumezzough


In this paper the problem of the Non MinimumPhase (NMP) channel identification using blind and adaptivealgorithms is theoretically and numerically evaluated in noiseenvironment case for different signal to noise ratio (SNR). Forthis problem, three blind algorithms based on Higher OrderCumulants (HOC) versus adaptive algorithms, i.e. RecursiveLeast Squares (RLS) and Least Mean Squares (LMS) arepresented. In order to assess the performance of these approachesto identify the parameters of non minimum phase channels,we have selected the Macchi channel model. The simulationresults in noisy environment and for different data input channel,provided to illustrate the performance of the blind approachesand compare them with adaptive algorithms.

Full Text:



K. Abederrahim, H. Mathlouthi and F. Msahli, “FIR System Identification using Higher Order Statistics,” American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June 10−12, pp. 5598−5603, 2009.

L. Srinivas and K. V. S. Hari, “FIR System Identification Based on Subspaces of a Hight Order Cumulant Matrix,” IEEE Transactions on signal processing, vol. 44 no. 6, pp. 1485−1491, 1996.

M. Bakrim and D. Aboutajdine, “Cumulant based identification of non gaussian moving average signals,” Traitement du Signal, vol. 16 no. 3 pp. 175−186, 1999.

C.-Y. Chi and J.-Y. Kung, “A new identification algorithm for all pass systems by higher order statistics,” Signal Processing vol. 41, pp. 239−256, 1995.

S. Safi, M. Frikel, M. M’Saad, and A. Zeroual, “Blind Impulse Response Identification of frequency Radio Channels : Application to Bran A Channel,” Int. J. Sig. Proces, vol. 4 no. 1 pp. 201−206, 2007.

S. Safi and A. Zeroual, “Blind non minimum phase channel identification using 3rdand 4thorder cumulants,” Int. J. Sig. Proces., vol. 4 no. 1, pp. 158−168, 2008.

M. Zidane, S. Safi, M. Sabri and A. Boumezzough, “Impulse Response Identification of Minimum and Non Minimum Phase Channels,” 4th Workshop on Codes, Cryptography and Communication Systems (WC-CCS’13) 07-08 November 2013, Meknes, Morocco.

J. Antari, A. El Khadimi, D. Mammas and A. Zeroual, “Developed Algorithm for Supervising Identification of Non Linear Systems using Higher Order Statistics: Modeling Internet Traffic,” International Journal of Future Generation Communication and Networking, vol. 5 no. 4, pp. 17−28, 2012.

J. Antari, A. Zeroual and S. Safi, “Stochastic analysis and parametric identification of moving average (MA) non Gaussian signal using cumulants,” International Journal of Physical and Chemical News, vol. 34, pp. 27−32, 2007.

K. Abderrahim, R. B. Abdennour, F. Msahli, M. Ksouri, and G. Favier, “Identification of non minimum phase finite impulse response systems using the fourth order cumulants,” Progress in system and robot analysis and control design, Springer, vol. 243, pp. 41−50, 1999.

K. Abderrahim, R. B. Abdennour, G. favier, M. Ksouri and F. Msahli, “New results on FIR system identification using cumulants,” APII−JESA., vol. 35 no 5, pp. 601−622, 2001.

A. Y. Kibangou, “Modèles de volterra à complexitè reduite : estimation parametrique et application à l’égalisation des canaux de communication,” Thèse de doctorat, Universit de Nice-Sophia Antipolis, 2005.

M. Zidane, S. Safi, M. Sabri, and A. Boumezzough, “Blind Identification of Minimum Phase Channels Based On Higher Order Cumulants,” International Conference on Intelligent Information and Network Technology (IC2INT’13) 13−14 November 2013, Settat, Morocco.

S. Safi, A. Zeroual and M. M. Hassani, “Prediction of global daily solar radiation using higher order statistics,” Renewable Energy, vol. 27, pp. 647−666, 2002.

S. Safi and A. Zeroual, “Blind identification in noisy environment of non minimum phase Finite Impulse Response (FIR) using higher order statistics,” Int. J. Sys. Anal. Modell. Simul., Taylor Francis, vol. 43 no. 5, pp. 671−681, 2003.

J. Antari, R. Iqdour and A. Zeroual, “Forecasting the wind speed proces using higher order statistics and fuzzy systems,” Renewable Energy, vol. 9, 237−251, 2006.

D. Brillinger and M. Rosenblatt, “Computation and interpretation of kth order spectra,” In Spectral Analysis of Time Signals, NewYork: Wiley, pp. 907−938, 1967.

A. G. Stogioglou and S. McLaughlin, “MA parameter estimation and cumulant enhancement,” IEEE Transactions on Signal Processing, vol. 44 no. 7, pp. 1704−1718, 1996.

D. Nion and L. De Lathauwer, “A Block Component Model Based Blind DS-CDMA Receiver,” IEEE Transactions on signal processing, vol. 56 no. 11, pp. 5567−5579, 2008.

T. Aboulnasr and K. Mayyas, “A robust variable step-size LMS-type algorithm : analysis and simulations,” IEEE Transactions on Signal Processing, vol. 45 no. 3, pp. 631−639, 1997.



  • There are currently no refbacks.