Presenting a Spatial-Geometric EEG Feature to Classify BMD and Schizophrenic Patients
Abstract
Full Text:
PDFReferences
American Psychiatric Association, 1994. Diagnostic and Statistical Manual of Mental Disorders, 4th ed. American Psychiatric Association, Washington DC.
P. He, G. Wilson, C. Russell, M. Gerschutz, “Removal of ocular artifacts from the EEG: a comparison between time-domain regression and adaptive filtering method using simulated data”, Med. Biol. Eng. Comp. vol. 45, 2007, pp. 495–503.
A. Barachant, S. Bonnet, M. Congedo, C. Jutten, “Classification of covariance matrices using a Riemannian-based kernel for bci applications,” Neurocomputing, vol. 112, , 2013, pp. 172 – 178.
X. Pennec, P. Fillard, N. Ayache, “A Riemannian framework for tensor computing”, Int. J. Comput. Vis., vol. 66, no. 1, 2006, pp. 41–66.
A. Fuster, A. Tristan-Vega, TD. Haije, CF. Westin, L. Florack, “A Novel Riemannian Metric for Geodesic Tractography in DTI”, in Computational Diffusion MRI and Brain Connectivity Mathematics and Visualization, 2014, pp. 97-104.
J. H. Manton, “A globally convergent numerical algorithm for computing the centre of mass on compact Lie groups”, in Proc. of ICARCV, 2004, pp. 2211-2216.
A. Barachant, S. Bonnet, M. Congedo, C. Jutten, “Common spatial pattern revisited by Riemannian geometry”, In IEEE International Workshop on Multimedia Signal Processing (MMSP), 2010, pp. 472-476.
M. Marx, KB. Pauly, C. Chang, “A novel approach for global noise reduction in resting-state fMRI: APPLECOR”, Neuroimage, vol. 64, 2013, pp. 19–31.
F. Alimardani, R. Boostani, M. Azadehdel, A. Ghanizadeh, K. Rastegar, “Presenting a new search strategy to select synchronization values for classifying bipolar mood disorders from schizophrenic patients”, Engineering Applications of Artificial Intelligence, vol. 26, no. 2, 2013, pp. 913–923.
E. Parvinnia, M. Sabeti, M. Zolghadri Jahromi, R. Boostani, “Classification of EEG Signals using adaptive weighted distance nearest neighbor algorithm”, Journal of King Saud University – Computer and Information Sciences, vol.26, 2014, pp. 1–6 .
J. Chun, Z. N. Karam, F. Marzinzik, M. Kamali, L. O'Donnell, I .F. Tso, T. C. Manschreckd M. McInnis, P.J. Deldin, “Can P300 distinguish among schizophrenia, schizoaffective and bipolar I disorders? An ERP study of response inhibition”, Schizophrenia Research, vol. 151, no. 1–3, December 2013, pp. 175–184.
A. Barachant, S. Bonnet, M. Congedo, C. Jutten, “Riemannian geometry applied to BCI classification”, in Proc. 9th International Conference Latent Variable Analysis and Signal Separation (LVA/ICA),vol. 6365, Saint Malo-France, 2010, pp. 629-636.
A. Barachant, S. Bonnet, M. Congedo, C. Jutten, “Multi-class brain computer interface classification by Riemannian geometry”, IEEE Transactions on Biomedical Engineering, vol. 59, no. 4, 2012, pp. 920-928.
F. Yger, “A review of kernels on covariance matrices for BCI applications”, IEEE International Workshop on Machine Learning for Signal Processing (MLSP), Sep 2013, pp. 1-6.
A. Barachant, A. Andreev, M. Congedo, “The Riemannian Potato: an automatic and adaptive artifact detection method for online experiments using Riemannian geometry”, TOBI Workshop lV, Sion- Switzerland, 2013.
G. Pfurtscheller, C. Neuper, “Future prospects of ERD/ERS in the context of brain-computer interface (BCI) developments”, Progress in Brain Research, vol. 159, 2006, pp. 433–437.
F. Alimardani, R. Boostani, E. Ansari, “Feature selection SDA method in ensemble nearest neighbor classifier”, In Proc. of the Springer, 13th International Conference of Computer Science and Engineering, Kish- Iran, March 2008, pp. 9–11.
DOI: http://dx.doi.org/10.11601/ijates.v5i2.143
Refbacks
- There are currently no refbacks.