P300 characterization using empirical mode decomposition

Victor S. Braz, Ana Claudia Souza, Gustavo F. Rodrigues


As the communication between brain and computer becomes more accessible the extraction of important features of electrophysiological signals is an essential step in artificial communication systems. This paper proposes the usage of the Empirical Mode Decomposition to identify characteristics of the P300 signal and classify target and non-target signals using a feedforward neural network. The results show that through the usage of EMD method it is possible to identify the P300 signal using low volume of data.

Full Text:



N. Birbaumer. Breaking the silence: brain-computer interfaces (BCI) for communication and motor control. Psychophysiology, 43:517-532, 2006.

H. Hwang, K. Kwon and C. Im. Neurofeedback-based motor imagery training for brain-computer interface (BCI). Journal of Neuroscience Methods, 179:[1]:150-156,2009.

A. Furdea, S. Halder, D. Krusienski, D. Bross, F. Nijboer, N. Birbaumer, and A. Kubler, An auditory oddball (p300) spelling system for braincomputer interfaces, Psychophysiology, vol. 46.3, pp. 617625, 2009.

N. Haghighatpanah, R. Amirfattahi, V. Abootalebi, B. Nazari. A single channel-single trial P300 detection algorithm, IEEE 21st Iranian Conference on Electrical Engineering, 2013.

G. Barbati, R. Sigismondi, F. Zappasodi F. Functional source separation from magnetoencephalographic signals . Hum Brain Mapp, 27:925934, 2006. doi:10.1002/hbm.20232.

L. Daubigney, O. Pietquin. Single-trial P300 detection with Kalman filtering and SVMs, in ESANN, 2011.

J. Spinnato, M. Roubaud, B. Burle and B. Torresani. Detecting single-trial EEG evoked potential using a wavelet domain linear mixedl model: application to error potentials classification. Journal of Neural Engineering, 12[3],2015.

N. Huang, Z. Shen, S. Long, M. Wu, S. Shih, Q. Zheng, N. Yen, C. Tung and H. Liu. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences[454], 1998

L. Qu and F. Wu. An improved method for restraining the end effect in empirical mode decomposition and its applications to the fault diagnosis of large rotating machinery. Journal of Sound and Vibration, 314:586602, 2008.

G. Oladosu. Identifying the oil price-macroeconomy relationship: An empirical mode decomposition analysis of us data. Energy Policy, 37[12]:5417 5426, 2009.

W. Huang, Z. Shen, N. Huang, and Y. Fung. Engineering analysis of biological variables: An example of blood pressure over 1 day . Proceedings of the National Academy of Sciences, 95[9]:4816 4821, 1998.

A. Tafreshi, A. Nasrabadi, and A. Omidvarnia. Epileptic seizure detection using empirical mode decomposition. IEEE International Symposium in Signal Processing and Information Technology, 2008. ISSPIT 2008, pages 238 242, 2008.

V. Bajaj. EEG signal classification using empirical mode decomposition and support vector machine. Proceedings of the International Conference on Soft Computing for Problem Solving, pages 623-635, 2011.

C. Wu. Empirical Mode Decomposition-Based Approach for Intertrial Analysis of Olfactory Event-Related Potential Features. Chemosensory Perception. 5[3-4]:280-291, 2012.

K. Shen, C. Ong, X. Li, Z. Hui, and E. Wilder-Smith. A feature selection method for multilevel mental fatigue EEG classification, IEEE Trans Biomed Eng, 54[ 7]:12311237, 2007.

E. Alharbi, S. Rasheed and S. Buhari. Single trial classification of evoked EEG signals due to RGB colors. 7[1], 2016.

J. Lindsen and J. Bhattacharya. Correction of blink artifacts using independent component analysis and empirical mode decomposition. Psychophysiology, 47: 955960, 2007, doi: 10.1111/j.1469-8986.2010.00995.x.

V. Bono, S. Das, W. Jamal and K. MaharatnaHybrid wavelet and EMD/ICA approach for artifact suppression in pervasive EEG. J. Neurosci. Methods, 267: 89107, 2016, doi: 10.1016/j.jneumeth.2016.04.006

E. Javed, I. Faye, A. Malik and J. Abdullah. Removal of BCG artefact from concurrent fMRI-EEG recordings based on EMD and PCA. J. Neurosci. Methods, 291: 150165, 2017, doi: 10.1016/j.jneumeth.2017.08.020

X. Li, Y. Yan and W. Wei. Identifying patients with poststroke mild cognitive impairment by pattern recognition of working memory load-related ERP. Comput. Math. Methods Med., 2013, doi: 10.1155/2013/658501.

C. Sweeney-Reed and S. Nasuto.Detection of neural correlates of self-paced motor activity using empirical mode decomposition phase locking analysis. J. Neurosci. Methods, 184: 5470, 2009, doi: 10.1016/j.jneumeth.2009.07.023.

S. Taran, V. Bajaj, D. Sharma, et al. Features based on analytic IMF for classifying motor imagery EEG signals in BCI applications. Measurement, 116: 6876, 2018, doi: 10.1016/j.measurement.2017.10.067.

M. Alam and S. Samanta. Empirical mode decomposition of EEG signals for brain computer interface. In: SoutheastCon 2017. IEEE, pp 16, 2017.

I. Daly, S. Nasuto and K. Warwick. Brain computer interface control via functional connectivity dynamics. Pattern Recogn., 45: 212336, 2011, doi: 10.1016/j.patcog.2011.04.034.

C. Wu, H. Chang, P. Lee, et al. Frequency recognition in an SSVEP-based brain computer interface using empirical mode decomposition and refined generalized zero-crossing. J. Neurosci. Methods, 196: 17081, 2011, doi: 10.1016/j.jneumeth.2010.12.014.

C. Sweeney-Reed, S. Nasuto, M. Vieira, A. Andrade. Empirical mode decomposition and its extensions applied to EEG analysis: a review. Advances in Data Science and Adaptive Analysis,10[2], 2018.

T. Solis-Escalante, G. Gentiletti and O. Yanez-Suarez. Single trial P300 detection based on empirical mode decomposition. In International Conference of the IEEE Engineering in Medicine and Biology Society, 2006.

B. Blankertz. BCI Competition III Webpage. Available Online at: http://www.bbci.de/competition/iii/.

L. Farwell and E. Donchin. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potential. Electroencephalogr and Clin Neurophy, 70:510-523, 1988.

DOI: http://dx.doi.org/10.11601/ijates.v8i3.279


  • There are currently no refbacks.