Universal Voltage Conveyor and Current Conveyor in Fast Full-Wave Rectifier

Josef Burian, Jaroslav Koton, Norbert Herencsar

Abstract


This paper deals about the design of a fast voltage-mode full-wave rectifier, where universal voltage conveyor and second-generation current conveyor are used as active elements. Thanks to the active elements, the input and output impedance of the non-linear circuit is infinitely high respectively zero in theory. For the rectification only two diodes and three resistors are required as passive elements. The performance of the circuit is shown on experimental measurement results showing the dynamic range, time response, frequency dependent DC transient value and RMS error for different values of input voltage amplitudes.

Full Text:

PDF

References


C. Toumazou, F. J. Lidgey, and D. G. Haigh, “Analogue IC design: The current-mode approach,” London: Peter Peregrinus Ltd., 1990.

U. Tietze, Ch. Schenk, and E. Gramm, “Electronic Circuits-Handbook for Design and Application”, Springer, 2008.

C. Toumazou and F. J. Lidgey, “Fast current-mode precision rectifier”, Electron. Wireless World, 1987, vol. 93, no. 1621, pp. 1115-1118.

S. J. G. Gift and B. Maundy, “Versatile precision full-wave rectifiers for instrumentation and measurements”, IEEE Trans Instrum. Meas., 2007, vol. 56, no. 5, pp. 1703-1710.

C. Toumazou, F. J. Lidgey, and S. Chattong, “High frequency current conveyor precision full-wave rectifier”, Electronics Letters, 1994, vol. 30, no. 10, pp. 745-746.

A. A. Khan, M. A. El-Ela, and M. A. Al-Turaigi, “Current-mode precision rectification”, Int. J. Electron., 1995, vol. 79, no. 6, pp. 853-859.

B. Wilson and V. Mannama, “Current-mode rectifier with improved precision”, Electronics Letters, 1995, vol. 31, no. 4, pp. 247-248.

D. Stiurica, “Truly temperature independent current conveyor precision rectifier”, Electronics Letters, 1995, vol. 31, no. 16, pp. 1302-1303.

S. J. G. Gift, “A high-performance full-wave rectifier circuit”, Int. J. Electron., 2000, vol. 87, no. 8, pp. 925-930.

E. Yuce, S. Minaei, and O. Cicekoglu, “Full-wave rectifier realization using only two CCII+s and NMOS transistors”, Int. J. Electron., 2006, vol. 93, no. 8, pp. 533-541.

S. Minaei and E. Yuce, “A new full-wave rectifier circuit employing single dual-X current conveyor”, Int. J. Electron., 2008, vol. 95, no. 8, pp. 777-784.

K. Montree, “High frequency and high precision CMOS full-wave rectifier”, in Proc. IEEE Int. Conf. Communication Systems, 2010, pp. 5-8.

S. Maheshawari, “Current controlled precision rectifier circuits”, J. Circuits, Systems, and Computers, 2007, vol. 16, no. 1, pp. 129-138.

N. Minhaj, “OTA-based non-inverting and inverting precision fullwave rectifier circuits without diodes”, Int. J. Recent Trends in Engineering, 2009, vol. 1, no. 3, pp. 72-75.

C. Jongkunstidchai, C. Fongsamut, K. Kumwachara, and W. Surakampontorn, “Full-wave rectifiers based on operational transconductance amplifiers”, Int. J. Electron. Commun., 2007, vol. 61, pp. 195-201.

C. Chanapromma and K. Daoden, “A CMOS fully differential operational transconductance amplifier operating in sub-threshold region and its application”, in Proc. IEEE 2nd Int. Conf. Signal Proc. Systems - ICSPS 2010, 2010, pp. V2-73-V2-77.

K. C. Smith and A. Sedra, “The current conveyor: a new circuit building block”, IEEE Proc., vol. 56, pp. 1368-1369, 1968.

A. Sedra adnd K.C. Smith, “A second-generation current conveyor and its application”, IEEE Trans. Circ. Th., vol. 17, pp. 132-134, 1970.

A. Fabre, “Third-generation current conveyor: a new helpful active element”, Electronics Letters, vol. 31, no. 5, pp. 338-339, 1995.

A. Fabre, O. Saaid, F. Wiest, and C. Baucheron, “High frequency applications based on a new current controlled conveyor”, IEEE Trans. Circuits Syst.-I, vol. 43, no. 2, pp. 82-90, 1996.

H. O. Elwan and A. M. Soliman, “Novel CMOS differential voltage current conveyor and its applications”, IEE Proc. Circuits, Devices, Systems, vol. 144, no. 3, pp. 195-200, 1997.

W. Surakampontorn and K. Kumwachara, “CMOS-based electronically tunable current conveyor”, Electronics Letters, vol. 28, no. 14, pp. 1316-1317, 1992.

I. M. Filanovsky and K. A. Stromsmoe, “Current-voltage conveyor”, Electronics Letters, vol. 17, no. 3, pp. 129-130, 1981.

T. Dostal and J. Pospisil, “Hybrid models of 3-port immittance convertors and current and voltage conveyors”, Electronics Letters, vol. 18, no. 20, pp. 887-888, 1982.

C. Acar and S. Ozoguz, “A new versatile building block: current differencing buffered amplifier suitable for analog signal processing filters”, Microelectronics Journal, vol. 30, no. 2, pp. 157-160, 1999.

K. Salama and A. Soliman, “Novel MOS-C quadrature oscillator using the differential current voltage conveyor”, in Proc. 42nd Midwest Symposium on Circuits and Systems - MWSCAS 99, Las Cruces, USA, pp. 279-282, 1999.

J. Koton, K. Vrba, and N. Herencsar,“Tuneable filter using voltage conveyors and current active elements”, Int. J. Electron., vol. 96, no. 8, pp. 787-794, 2009.

J. Koton, N. Herencsar, and K. Vrba, “KHN-equivalent voltage-mode filters using universal voltage conveyors”, Int. J. Electron. Commun., vol. 65, no. 2, pp. 154-160, 2011, doi:10.1016/j.aeue.2010.02.005.

D. Biolek, V. Biolkova, and Z. Kolka, AC analysis of operational rectifiers via conventional circuit simulators, in Proc. WSEAS Transactions on Circuits and Systems, vol. 3, no. 10, pp. 2291- 2295, 2004.

Datasheet UCC-N1B: Universal Current Conveyor (UCC) and Second-Generation Current Conveyor (CCII+/-), Rev.0, 2010, available online: http://www.utko.feec.vutbr.cz/˜koton/soubory/ucc n1b rev0.pdf.

Datasheet UVC-N1C 0520: Universal Voltage Conveyor,

Rev.0, 2010, available online: http://www.utko.feec.vutbr.cz/˜herencsar/UVC N1C 0520.pdf.

Datasheet High-speed diodes 1N4148; 1N4448, NXP

Semiconductors, Aug. 2004, avaialble online: www.nxp.com/documents/data sheet/1N4148 1N4448.pdf




DOI: http://dx.doi.org/10.11601/ijates.v1i2-3.8

Refbacks