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Abstract—Using modern Graphic Processing Units (GPUs)
becomes very useful for computing complex and time consuming
processes. GPUs provide high–performance computation capa-
bilities with a good price. This paper deals with a multi–GPU
OpenCL and CUDA implementations of k–Nearest Neighbor (k–
NN) algorithm. This work compares performances of OpenCL
and CUDA implementations where each of them is suitable
for different number of used attributes. The proposed CUDA
algorithm achieves acceleration up to 880x in comparison with
a single thread CPU version. The common k-NN was modified
to be faster when the lower number of k neighbors is set. The
performance of algorithm was verified with two GPUs dual-core
NVIDIA GeForce GTX 690 and CPU Intel Core i7 3770 with
4.1 GHz frequency. The results of speed up were measured for one
GPU, two GPUs, three and four GPUs. We performed several
tests with data sets containing up to 4 million elements with
various number of attributes.

Keywords—Artificial intelligence, big data, comparison, CUDA,
GPU, high performance computing, k-NN, multi–GPU, OpenCL.

I. INTRODUCTION

Parallel computing is a way how to accelerate many algo-
rithms, which are computationally intensive. These algorithms
can be found in image, sound and video applications or
simulations, data mining, security [1], forecasting systems, etc.

k-NN belongs to the algorithms of artificial intelligence and
it is one of the most widely used algorithms in data mining
applications. Algorithm can be used for the classification of
many various problems from business or science. Sometimes
there is a requirement to process large datasets with high
dimensional data. These problems can take days to compute.
Using parallel computing, these problems can be solved faster
than using non–parallel implementation. GPUs have much
more cores than CPU, so they can be used as better solution for
parallelization. The next advantage to use GPUs is relatively
low price due to their high performance. k-NN algorithm is a
good candidate for GPU parallelization.
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In this paper an OpenCL [2] and CUDA [3] accelerated
version of k–Nearest Neighbor machine learning algorithm has
been introduced. This work is based on our previous work [4].
The algorithm is very computationally intensive mainly when
big datasets with high dimensional data have to be processed.
The process can take hours or days. To solve this problem,
we modified common k–NN algorithm to run on multiple
GPUs. We used two common gaming dual–core graphic cards
NVIDIA GeForce GTX 690 [5] with 2x3072 CUDA cores in
total. The theoretical single precision computing performance
is 11.24 TFLOPS for both devices. We also used these GPUs
to speed up Viola–Jones object detector [6], which was also
used in [7] [8] [9].

The main contribution of this paper is the creation of the
OpenCL and CUDA versions of k–NN algorithm, which can
be executed on several GPU cards in parallel. Using this rela-
tively cheap hardware, it is able to speed up computation up to
880 times in comparison with CPU with 4.1 GHz frequency.
A newly created algorithms were tested on dataset containing
millions of elements with various number of attributes (4, 10,
100 and 1000 attributes) and then algorithms were together
compared.

The rest of the paper is organized as follows: Section II
describes other GPU implementations of k–NN algorithm.
Section III describes k–NN algorithm. OpenCL and CUDA
platforms are introduced in section IV. In section V our
GPU implementation is described. Results and discussion are
described in section VI. Section VII concludes this paper.

II. RELATED WORK

GPU computing has become very popular during last several
years. There is also increasing need to process more amount of
data with artificial intelligence. The next paragraph describes
several articles dealing with CUDA implementations of k-NN
GPU algorithm and various use cases of the algorithm.

In [10] a new brute force algorithm for building the k-
Nearest Neighbor Graph is described. The proposed algorithm
has two parts, where the first is for finding distances between
the input vectors and the second part is for selection of k
neighbors for each testing sample. Also new algorithm based
on quick sort was implemented for quicker sorting of distance
pairs. The algorithm achieves higher speed up, if the k variable
is increasing.

The paper [11] compares GPU implementation of brute
force k-NN with several CPU based implementations and the
implementation of algorithms from ANN1 library (A Library

1Available from URL: http://www.cs.umd.edu/˜mount/ANN/
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for Approximate Nearest Neighbor Searching).
In [12] [13] several optimization techniques were applied

to maximize the utilization of the GPU.
The work [14] describes MST (minimum spanning tree)

problem, which is resolved by the combination of classi-
cal Boruvka MST algorithm and the k-NN graph structure.
Achieved speed-ups were between 30 and 40 in comparison
with CPU implementation.

In [15] authors describe how to use GPU k-NN algorithm
for image processing (texture analysis). Their algorithm is 150
times faster than CPU version during processing synthetic data
and up to 75 times faster during processing image data.

In [16], the LSH (Locality Sensitive Hashing) algorithm was
used for k-NN computation. The results were demonstrated
on large image datasets and achieved acceleration was 40 in
comparison with CPU version.

Several comparison tests between OpenCL and CUDA
frameworks were performed. In [17] authors performed 16
benchmark tests where CUDA achieves for about 30 % better
performance than OpenCL. Further they tried OpenCL porta-
bility and they did not found differences in performance. In
[18] authors compared executive time of CUDA Drive API
with OpenCL platform where CUDA was for about 5 % faster
than OpenCL.

The implementation of GPU k-NN algorithm into Rapid-
Miner2 data mining platform was described in [19]. The
algorithm was created in JAVA programming language with
using jcuda3 library that is responsible for executing CUDA
kernel from JAVA. Created algorithm achieves 170x speedup,
but it depends mainly on number of used attributes (using
more than 128 attributes decreases the speedup).

Our approach differs from using OpenCL platform instead
of CUDA and our algorithm has several improvements in
comparison with some approaches described in this paragraph.
The main improvement is an option to run our algorithm on
multiple GPUs in parallel. The created OpenCL kernel was
partially vectorized and the algorithm was created without
need to have some sorting algorithms. These improvements
speed up the algorithm. Our solution was tested on very large
data set, where the processing time was minutes against other
works, where processing quite small datasets took seconds.

III. k-NEAREST NEIGHBOR ALGORITHM

k–NN algorithm can be used for classification or regression.
The principle of k–NN is shown in Fig. 1. The input of
algorithm are training examples and testing examples. For
each testing example, the distance (Euclidean, Manhattan,
etc. ) of attributes between testing and training example is
computed. The distances are computed for the one testing
example and all training examples. Then the distances are
sorted according to their values. The training examples with
k lowest differences are selected as the nearest neighbors.
According to their classification classes, the testing example
is classified. Usually the lower number of k value is set.

2Available from URL: http://rapidminer.com
3Available from URL: http://www.jcuda.org/

Fig. 1. The principle of k–NN algorithm.

IV. OPENCL AND CUDA INTRODUCTION

Nowadays there exist two platforms for GPU computing that
are well used by many users. The first developed platform is
CUDA [3] and the second is OpenCL [2]. CUDA is being
more used but on the other hand CUDA can only be used
with NVIDIA GPUs. OpenCL is being used less than CUDA
but OpenCL can be performed on many various devices.

When compared these GPU platforms with common CPU
solution, GPU hardware is much more specialized for intensive
highly parallel computing. It can be seen from Fig. 2 and
Fig. 3 where ALU (Arithmetic Logic Unit) elements are used
for computing. The GPU hardware can process much more
computing units in parallel than CPU.

Fig. 2. Scheme of CPU

A. OpenCL

OpenCL (Open Computing Language) [2] is an open
royalty-free standard determined for parallel programming of
suitable devices like CPUs, GPUs and the other devices.
OpenCL can solve many problems more efficiently than CPU.
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In these days, the GPU computing is very popular and many
applications have been developed in OpenCL.

There are two types of OpenCL code. The first type exe-
cuted on CPU is called host part and the second one that is
executed on OpenCL device is called device part. OpenCL ker-
nel is executed in a device. The kernel can contain optimized
code with OpenCL functions. OpenCL devices use SIMT
(Single Instruction Multiple Threads) architecture. OpenCL
device consists of Streaming Multiprocessors (SMs) where
each of them contains many simple cores. These cores are
able to do only simple operations, so OpenCL programming is
more complex. Cores can execute many work-items (threads)
in parallel. Work-items are grouped into work-group and they
can mutually communicate and use the same (shared) local
memory. The number of work-groups and work-items has to
be set on the start of the process. OpenCL device contains on–
chip and off–chip memories. On–chip (private, local) memo-
ries are faster than off-chip (global memory, constant memory,
texture cache). However some of these memories can be fast
too, because they are cached. [20]

B. CUDA

CUDA [21] is a parallel computing and programming
platform and only newer NVIDIA graphic cards are supported
by CUDA. Nowadays, there exist many GPU computing
applications developed in CUDA for example deep learning
algorithm [22] that is used for training neural network for
image recognition.

Common CUDA GPU uses same principles that are de-
scribed in OpenCL section. There are only different names of
therms (shown in Table I). In CUDA CPU is marked as a host
and GPU is marked as a device.

V. OPTIMIZATION k-NN FOR GPUS

Firstly, we tried to process large data sets in RapidMiner, but
unfortunately the original CPU version of k-NN was too slow.
So we decided to create GPU accelerated algorithm that can be

Fig. 3. Scheme of GPU

executed from RapidMiner. Our implementation was created
in JAVA programming language, because RapidMiner is also
programmed in JAVA. The first step was to create OpenCL
kernel that was created in C programming language with using
OpenCL syntaxes. For mutual cooperation between OpenCL
and JAVA, jocl4 library was used [21]. According to OpenCL
kernel we created CUDA version of this kernel using CUDA
version 7.5 and jcuda5 library that was used as JAVA wrapper.

Training and testing data sets have to be transformed into
float arrays before they are transmitted to GPU. We used
OpenCL vector format called float4 that has a big advantage: it
contains four float values that are processed in one step instead
of four steps (for common float). So every training and testing
example is saved into float4 array. We also optimized kernel
with using local memory.

In our implementation, the classical principle of k-NN was
a little bit modified. The differences are mutually compared
during their computation and the lowest k differences are saved
as final nearest neighbors. The algorithm 1 shows the principle
of modified algorithm. After this modification, the algorithm
can work faster for lower k values. When compared with CPU
version, the classification results were the same.

A. Multi–GPU support

For multi–GPU support we created a JAVA library that is
able to utilize all found GPUs. This library is available only for
OpenCL. The library can automatically split input and output
data and transmit them equally into all devices. It decreases
amount of transmitted data. The next advantage is a very easy
way, how to write code in JAVA with minimum knowledge of
OpenCL. For multi–GPU support for CUDA platform we had
to run split data into GPUs and start computing on each GPU
in separated JAVA thread in parallel.

In case of k-NN algorithm, the training data vector had
to be transmitted into all GPU devices. Testing data vector
and vector with final predictions were splitted equally into
all device due to lower load of GPU memory. We also tried
the version of algorithm, where data were not splitted into
GPU devices, but they were copied whole to each device.
Differences between computing times of each version were
negligible.

4Available from URL: http://www.jocl.org/
5Available from URL: http://www.jcuda.org/

TABLE I
CUDA AND OPENCL TERMINOLOGY MAPPING

CUDA OpenCL
Grid NDRange
Thread Block Work–group
Thread Work item
Thread ID Global ID
Block index Block ID
Thread index Local ID
Shared Memory Local Memory
Local Memory Private Memory
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Input: training data (float4), testing data (float4)

Output: prediction vector

loading test sample from testing data;

foreach train sample do
foreach attribute do

compute distance between train and test samples;
sum distances;

end
for k = 0 to number of neighbors do

if sum of distances < distance for k neighbor
then

distance for k neighbor = sum of distances;
shift distance values for other k distances;
break;

end
end

end
counting number of neighbors for each label;
selecting label with highest number of neighbors;
setting prediction for test sample to prediction vector;

Algorithm 1: k-NN OpenCL algorithm

VI. RESULTS AND DISCUSSION

We performed several comparison tests to verify the func-
tionality of our accelerated k-NN algorithms. The tests were
performed with data sets containing different amount of ele-
ments and different numbers of attributes. Since the algorithm
has been modified to have a good result for lower k parameter
(k = 5), we also carried out several tests for higher values of
k parameter (k = 10, k = 20). For a comparison between CPU
and GPU versions, we used RapidMiner platform that consists
of many machine learning and data–mining algorithms. First,
we generated polynomial data set using one of the RapidMiner
algorithms. Then this data set was divided into two parts.
The training part contained 25 % of elements and testing part
contained 75 % of elements. In the next step, several tests with
different number of elements and different number of attributes
were performed. We used CPU version of k-NN algorithm
integrated in RapidMiner and our GPU versions of k-NN that
were also executed in RapidMiner.

TABLE II
OPENCL - COMPARING FOR DIFFERENT k NEIGHBORS.

k = 1 k = 10 k = 20
1 million, 10 attributes. 14.1 s 25.2 s 93.7 s
1 million, 4 attributes. 4.1 s 17.8 s 88 s

TABLE III
CUDA -COMPARING FOR DIFFERENT k NEIGHBORS.

k = 1 k = 10 k = 20
1 million, 10 attributes. 16 s 21.7 s 88.5 s
1 million, 4 attributes. 3.8 s 16.2 s 78.8 s

Our measurements were performed in computer with CPU

Core i7-3770 4.1 GHz (in boosted mode), 32 GB RAM and
two dual-core NVIDIA GeForce GTX 690 [5] graphic cards
that are very powerful in single precision mode. Every GTX
690 consists of two GPU cores and every GPU core has
8 Streaming Multiprocessors and each SM consists of 192
CUDA cores (1536 CUDA cores in total). The size of a
GPU memory is 4096 MB with 6 GHz frequency. GTX 690
has theoretical performance 5.62 TFLOPS in single precision
mode. When both GPU cards are used, the performance of
system is 11.24 TFLOPS. The measured power consumption
of one GPU GTX 690 was 300 watts.

The tests were performed with using one core of CPU,
one GPU, 2 GPUs, 3 GPUs and 4 GPUs. The results show
how much time each scenario took and they are described
in the Table IV for OpenCL implementation and in Table V
for CUDA implementation. In this case the measurements
were performed for k = 5. As we can see from table some
CPU computations can take days in comparison with GPU
computation, where it takes minutes. Fig. 4 shows speed up of
our OpenCL GPU implementation of k–NN algorithm. We can
see that increasing amount of attributes can decrease speed up.
Speed up can be also increased if higher number of elements
is used. Scenarios for CUDA implementation are shown in
Table V. The overall speed up of CUDA implementation of
k–NN algorithm is shown in Fig. 5. The best speed up was
achieved in scenario with 1 million of elements and 4 attributes
where achieved speed up was 882 times. The comparison
between CUDA and OpenCL implementations is shown in
Fig 6. We can see that for scenarios with number of attributes
100 and 1000, CUDA was for about 3 % faster than OpenCL.
For scenarios with 10 attributes OpenCL implementation was
faster for about 11 %. And for 4 attributes CUDA was for
about 18 % faster than OpenCL. These differences in speed
up when 4 or 10 attributes are used, can be caused with using
float4 data type for storing array of attributes where CUDA can
handle much more better with 4 attributes in one float4 array
than with 10 attributes in 3 float4 arrays where two elements
in array are not used. When computing the average value of
all scenarios, CUDA was for about 0.5 % faster.

The table II shows the results for using different values
of k (measured for all GPUs). Our OpenCL implementation
has been created to work effectively with the number of k
neighbors lower than 10. Otherwise, the speed up of algorithm
will be radically decreased. In comparison with CUDA imple-
mentation (see Table. III) we can see that CUDA is slightly
faster than OpenCL implementation.

VII. CONCLUSION

The main contribution of this work is OpenCL accelerated
implementations of k-Nearest Neighbor machine learning al-
gorithm with using OpenCL and CUDA. The algorithm can
be executed on multiple GPUs in parallel. We created the
modified version of algorithm that achieves very good results
for k neighbors lower than 10. We found that with using rela-
tively cheap hardware (2x NVIDIA GeForce GTX 690), it is
possible to compute 4 million elements (each has 10 attributes)
in 3 minutes in comparison with using one single core CPU
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TABLE IV
RESULTS OF COMPUTATION FOR OPENCL IMPLEMENTATION - k = 5.

1 CPU 1 GPU 2 GPUs 3 GPUs 4 GPUs
0.4 million, 1000 attributes 17h 35min 843 s 434 s 295 s 228 s
2 million, 100 attributes 2d 4h 10min 2106 s 1056 s 707 s 532 s
1 million, 10 attributes 1h 55min 40.2 s 21.7 s 15.2 s 11.5 s
4 million, 10 attributes 1d 7h 29min 645 s 332 s 223 s 169 s
1 million, 4 attributes 1h 12min 21 s 11.1 s 7.5 s 5.8 s

CPU - Intel Core i7 3770@4.1GHz, L3 cache - 8192kB
4 GPU - 2x3072 cores, mem. 2x4096MB@6 GHz, GPU - 1019 Mhz

Fig. 4. Acceleration for OpenCL version of k-NN algorithm.

TABLE V
RESULTS OF COMPUTATION FOR CUDA IMPLEMENTATION- k = 5.

1 CPU 1 GPU 2 GPUs 3 GPUs 4 GPUs
0.4 million, 1000 attributes 17h 35min 818 s 419 s 286 s 218 s
2 million, 100 attributes 2d 4h 10min 2038 s 1023 s 683 s 523 s
1 million, 10 attributes 1h 55min 47.3 s 23.9 s 15.9 s 12.6 s
4 million, 10 attributes 1d 7h 29min 757 s 377 s 252 s 196 s
1 million, 4 attributes 1h 12min 18 s 9.3 s 6.4 s 4.9 s

CPU - Intel Core i7 3770@4.1GHz, L3 cache - 8192kB
4 GPU - 2x3072 cores, mem. 2x4096MB@6 GHz, GPU - 1019 Mhz

(Intel Core i7–3770, 4.1GHz), where the computation took
over 31 hours. The best achieved acceleration was up to 880x.
Our algorithms were created in JAVA programming language
and they have been implemented in to the RapidMiner data
mining platform. The most time consuming part of algo-

rithm has been created in OpenCL and CUDA. For mutual
cooperation between JAVA and OpenCL or CUDA, the jocl
and jcuda libraries were used. When compared OpenCL and
CUDA implementations, CUDA has better results for data set
containing 4 attributes or with 100 or 1000 attributes, but
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Fig. 5. Acceleration for CUDA version of k-NN algorithm.

Fig. 6. Speed up comparison between CUDA and OpenCL implementations of k-NN algorithm.
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on the other hand OpenCL has better result with using data
set with 10 attributes. When compared overall results, both
OpenCL and CUDA achieves similar speed up.
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